
www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

■UMI
Accessing the World’s Information since 1938

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

www.manaraa.com

www.manaraa.com

O rd e r N u m b e r 8822999

Mechanical design rationalization using function description
language

Lai, Kewei, Ph.D.

Northwestern University, 1988

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

NORTHWESTERN UNIVERSITY

MECHANICAL DESIGN RATIONALIZATION
USING

FUNCTION DESCRIPTION LANGUAGE

A DISSERTATION
SUBMITTED TO GRADUATE SCHOOL

PARTIAL FULFILLMENT OF ‘THE REQUIREMENTS
FOR THE DEGREE

DOCTOR OF PHILOSOPHY
FIELD OF MECHANICAL ENGINEERING

by

KEWEI LAI

Evanston, Illinois
JUNE 1988

www.manaraa.com

a b s t r a c t

MECHANICAL DESIGN RATIONALIZATION
USING

FUNCTION DESCRIPTION LANGUAGE

Kewei Lai

In recognition of the clear need for improving the
competitive position of U.S. industry and the availability
of ever more sophisticated computer tools, research in the
new engineering discipline termed design theory and
methodolgy has been strongly promoted. In this
dissertation the author presents a new design methodology
for mechanical design, Decomposition-Description-
Rationalization. This has been developed to help implement
a new design philosophy, Design for Manufacturing. An
automatic design system, Function Rationalization System
(FRS) and A high-level design language, Function
Description Language (FDL), have been written using the
methodology. Mechanical design can be characterized in a

*■way that closely resembles human cognitive processes. A
user can develop product layouts which are both
functionally optimal and economically manufacturable by
consulting FRS at the conceptual design stage.

www.manaraa.com

AKNOWLEDGEMENTS

The author would like to extend his sincerest
gratitude to his advisor, Professor William R. D. Wilson,
for his constant encouragement and financial support which
led to this dissertation. The author would like to thank
Professor G. K. Krulee and Professor W. E. Schmitendorf for
their outstanding contributions to this work. The author
would also like to thank the Center For Manufacturing
Engineering at Northwestern University for the use of its
computer facilities.

The author would like to thank his parents for all the
love and encouragement they gave to him through his
academic years.

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS ... iii
TABLE OF CONTENTS iv
LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION 1
CHAPTER 2 CURRENT PROGRESS OF MECHANICAL DESIGN 8

2.1 A New Design Philosophy -
Design For Manufacturing 8

2.2 Computer Aids For Conceptual D e s i g n 12
2.3 Knowledge Management Utilities For Design .. 16

CHAPTER 3 FUNCTION DESCRIPTION AND RATIONALIZATION ... 19
3.1 Overview of the FRS S y s t e m 19
3.2 Decomposition-Description-Rationalization .. 21
3.3 Function Description Language 22

CHAPTER 4 PRODUCT DATABASE 26
4.1 Hierarchical Design Entities 26

4.1.1 Module Declaration 27
4.1.2 Storage of FDL Sentences.... 28
4.1.3 Component Declaration 29
4.1.4 Generic Entity 31

4.2 Operations 31
4.2.1 Compare with a Value 32
4.2.2 Compare Two Generic Entities 32
4.2.3 Generic Comparison 32
4.2.4 Assignment Operations 33

4.3 Reasoning Mechanism 33

iv

www.manaraa.com

4.3.1 'IF conditions THEN actionsl ELSE
actions2' Statement 34

4.3.2 Virtual Relation 35
CHAPTER 5 LIBRARY OF DESIGN RULES 39

5.1 Analysis Command and Design Rule 39
5.1.1 Analysis Command 39
5.1.2 Design Rule 40

5.2 The Principles of Design Rationalization ... 42
5.2.1 Principle of Modularization 42
5.2.2 Elimination of Direct Chain 43
5.2.3 Elimination of Implied Chain 44
5.2.4 Principle of Function Integration ... 45
5.2.5 Principle of Function Distribution .. 45
5.2.6 Principle of Parametric Design 46
5.2.7 Dimension Standardization 48
5.2.8 Principle of Direct Assembly 48
5.2.9 Principle of Fastener-less 49
5.2.10 Miscellaneous Rules 50

Chapter 6 AN APPLICATION EXAMPLE 52
6.1 Description of The Initial D e s i g n 52
6.2 Output Messages of FRS 56
6.3 Description of Modified Design 59

CHAPTER 7 SUMMARY AND FURTHER WORK 63
7.1 Achievements and Limitations 63
7.2 Future Work 64

REFERENCES .. 66
APPENDIX A GRAMMER OF FUNCTION DESCRIPTION LANGUAGE .. 74
APPENDIX B DESIGN RULES 80
APPENDIX C OUTPUT MESSAGES OF FRS ON THE INITIAL

DESIGN OF THE COMPASS 84
APPENDIX D USER'S GUIDE TO FRS 92

VITA ... 100
v

www.manaraa.com

LIST OF FIGURES

Figure 3.1 Function Rationalization System 20
Figure 4.1 Hierarchical Description of a Part 27
Figure 6.1 Sketch of A Compass and Its

Modification 53
Figure 6.2 Compensator Gears 59
Figure 6.3 Modified Design of Gears......... 62

vi

www.manaraa.com

CHAPTER 1 INTRODUCTION

Engineering design is a sequence of activities using a
systematic methodology to synthesize something new or to
arrange existing things in a new way to satisfy a
recognized need of society [1]. Design usually starts with
design goals, such as functional requirements, performance,
cost, delivery time, etc., and proceeds from a rough
conceptual design to a fully detailed final design for
release to manufacturing. In the conceptual design, the
fundamental operating principles are developed, alternative
systems that could satisfy the specified need are explored
and the layout of products is established, systems are
partitioned into parts, sub-assemblies and assemblies, and
materials from which to manufacture parts are selected. In
the final design, the details of the system and components
are specified, such as, kinematics, dimensions and
tolerancing, positions, etc. The design produces a
outcome, which is evaluated to decide whether it is
adequate to meet the needs. If the evaluation uncovers
deficiencies, then the design operation must be repeated.
The information from the first design is fed back as input,
together with new information that has been developed as a
result of questions raised at the evaluation step. The
iterative nature of design provides an opportunity to

1

www.manaraa.com

improve the design on the basis of a preceding outcome,
which in turn leads to the search for the best possible
outcome [1-5].

The manufacturing world wide is going through a major
upheaval. The advent of inexpensive, high speed computers
has provided extensive support for manufacturing, such as
numerical control, computer numerical control; flexible
manufacturing and computer integrated manufacturing
systems; computer-automated process control; computer-
automated process planning; robots for parts handling,
welding, and spray painting; automatic material handling,
etc. However, in almost all industries, product design is
still carried on nearly independently of manufacturing.
There is a great need for design methods which take
advantage of the versatility of new manufacturing
techonology, especially flexible manufacturing and flexible
assembly systems [6].

In recognition of this emerging demand for new design
strategies and the availability of ever-improving computer
technology, there is an increasing interest in the new
engineering discipline, Design Theory and Methodology.
Design theory refers to systematic statements of principles
and relationships which explain the design process and
provide a useful methodology for design. Design
methodology is the collection of procedures, tools and

www.manaraa.com

techniques which the designer may use in applying design
theory to the process of design. Two sub-areas are
considered central to this research, (1) Conceptual design
and innovation and (2) Quantitative and systematic methods
for design. In addition, three supporting disciplines and
methodologies are considered critical to the future growth
of the design field: (1) Intelligent and knowledge-based
systems; (2) Information integration and management; and
(3) Human interface aspects in design [6].

There are now extensive computer software tools
available for detailed design. Computer graphics systems
are becoming dominant tools for drafting and representation
of geometry, components, and assemblies. Advanced computer
analysis, simulation and optimization tools are also in
wide use. However, the application of the computer in
conceptual design is still quite limited. Conceptual
design is a complex cognitive process by which a market
need is transformed into a well-formed set of design
specifications and functional structures are established.
The cognitive process involved is still far beyond our
understanding. There is no coherent body of principles
and methods to guide this design process. Very few
computer tools are available for the special needs of this
stage, such as the establishment of the general
configuration of a product [7-11].

www.manaraa.com

Current research in the area of intelligent and
knowledge-based systems, i.e. Artificial Intelligence (AI)
has provided useful tools for mechanical design as related
to manufacturing. One of the motivations for applying AI
to mechanical design is to bring manufacturing knowledge
into consideration early in the design process. Most
importantly, research is being directed toward modeling
the design process and developing theory and tools, such as
expert systems, for specific designs or design related
tasks.

Expert systems are just beginning to make their way
into mechanical design. To date, the tools available only
cover a small part of the intellectual tasks and problem
solving methods used in mechanical design: those that have
a very limited choice of solutions, are easily broken down
into independent sub-solutions, and have reliable data
available for the knowledge base. Future development and
integration of these technologies are still dependent on
the understanding of the methodology of the mechanical
design process.

In this dissertation research in the theory and
methodology for the conceptual design of mechanical
products is presented. Progress has been made in the
following aspects, (1) a new design methodology, Design
Rationalization, has been developed, (2) A high-level

www.manaraa.com

design language, Function Description Language (FDL), has
been developed to allow the methodology to be carried out
on computers, and (3) A trial version of the design system,
Function Rationalization System (FRS), has been built up to
test the utility of the new methodology and the FDL design
language.

Except for a few innovative products, most mechanical
designs in industry today result from an evolution process.
New designs are usually based upon the 'best' features of
previous designs. However, there are often cases where the
structures taken from a previous design may have functions
which are not needed in the new design. Even essential
functions may not be properly assigned to the components.
If the resulting redundancies are removed, and the
remaining functions are re-distributed properly, the
structure of a product will be simpler and much better
organized. Therefore, a good design can be achieved by
investigating the functions of the parts in an initial
design in a systematical way. Based on this observation, a
new design method, called 'Decomposition-Description-
Rationalization', or Design Rationalization, has been
developed.

Traditionally, conceptual design can only be done by
human designers, because most of the information involved
in this stage lacks quantitative expression. The

www.manaraa.com

automation of this activity requires the development of
vocabularies and reasoning methods such that the abstract
design concepts, specifications, and design steps can be
represented in an operational form and be manipulated by
computers as a counterpart of the human cognitive process.
The use of a design language as a new tool for automatic
conceptual design process has been explored. The research
has resulted in a high-level design language, Function
Description Language (FDL).

These two aspects have been integrated into an
automatic design system, Function Rationalization System
(FRS). The prototype of FRS is written in the C language
and runs on a DEC VAX-11/785 with VMS operating system.

The organization of this dissertation is as follows.
This chapter addresses the emerging needs due to the
progress on manufacturing technologies for new design
methods, especially the methods of carrying out conceptual
designs on computers. It highlights the author's work in
the area of modeling and automating the conceptual design
of mechanical products. Chapter 2 presents a survey on the
new design philosophy, Design for Manufacturing, the
computer tools for conducting conceptual design, and the
Expert Database technologies, which are used to develop the
FRS system. Chapter 3 introduces our research work. The
architecture of the Function Rationalization System (FRS)

www.manaraa.com

is presented. The rationale for developing Decoraposition-
Description-Rationalization and Function Description
Language (FDL) is discussed. Chapter 4 introduces the
features of the FRS database. Several important
improvements are made to the relational data base model
using Expert Database techniques. Chapter 5 discusses the
design library and most important principles of design
rationalization. In Chapter 6 an application example of
the Design Rationalization is presented. Chapter 7
summarizes our work and proposes future research
directions.

www.manaraa.com

CHAPTER 2 CURRENT PROGRESS OF MECHANICAL DESIGN

2.1 A NEW DESIGN PHILOSOPHY - DESIGN FOR MANUFACTURING
With the rapidly growing number of products and

product variations, shorter product life cycles and
/increased competition from foreign industries, computer

aided manufacturing technologies, such as numerical
control, robotics, and flexible automation in general, have
been brought into wide use in industry today [12-15].
However, such efforts are often not as successful as
expected, and it has been realized that mechanical design
and manufacturing must be treated as a global strategy,
involving both the product itself and the production
systems. Greater attention must be paid to the design
itself, since it is here that manufacturing costs are
largely determined.

Traditionally, the designer does the design and then
the manufacturing engineer tries to plan processes to fit
the design. However, it is a common experience that a part
can be much more easily made if it is slightly redesigned
to allow the use of a different process, different tooling,
or different materials [16,17], Such changes become more
difficult to implement as design proceeds. Therefore, a
design should be evaluated for manufacturability at an
early stage of design.

www.manaraa.com

Assembly is usually the single most important process
contributing to manufacturing costs. When productivity
improvements are sought, one must determine whether the
design of a product lends itself to assembly operations.
This idea is due to Boothroyd et al and is well known as
'Design for Assembly' [18], Boothroyd's approach for the
first time provides a systematic way for testing the
assemblability of a product design prior to its release to
manufacturing. As a result, the number of parts in a
product can be reduced and the ease of assembling the
remaining parts can be increased [19-28].

There are many more factors .determining production
costs, such as materials, processing sequences, machine
tools, and development of new processes. For example,
forging can be replaced by heavy stamping and casting;
stamping can be replaced by die-casting or plastic molding;
cold forming parts may eliminate the need for machining
operations. Various materials and processes compete with
each other for the most economy in a product. To take the
advantages of the new possibilities, methods of selecting
materials and processes are needed. For the greatest
saving, the process and material selection activity should
occur prior to the time that final part drawings are
generated. The material and process selection procedure
should start immediately after initial product design

www.manaraa.com

10
sketches are available. For each known process, analysis
will be made to determine whether it can be used to make
the entire part. The material handling ability, the part
shape and size, and batch quantity are major criteria for
evaluating processes. Often one of these factors will
completely eliminate a process from further consideration.
Once preliminary planning has been made, the operation
routines are prepared for the remaining processes. Final
decisions can be made based upon the cost estimation of
each combination of processes. This idea can be summarized
as a simple philosophy, ’Design For Manufacturing'.
Through eliminating difficult-to-make“structures at early
conceptual design stage, the product can be economically
manufacturable.

Developing the methodology of 'Design For Manufacture'
and implementing it into automatic design systems is
described by Wilson and his co-workers [29-31]. This work
has resulted in the family of computer programs, MAPS
(Material And Process Selection). MAPS-1 [29] generates
interactively a twelve digit code representing
characteristics of the part. After eliminating
incompatible process and material combinations, the program
indicates how many combinations remain and on request will
provide a list of them broken down into two categories,
usual practice and unusual (or more costly) practice. If

www.manaraa.com

the number of combinations is too small (or none) the user
may elect to investigate relaxing some of the design
requirements or manufacturing the part in more than one
step. The MAPS-2 [30] is an improved version of MAPS-1
with the addition of a ranking system, which is based on
the use of figures of merit. These are quantitative
measures of how well a particular material and process
combination satisfies a qualitative criterion of
excellence set up by the designer. In MAPS-3 [31]
artificial intelligence techniques have been employed. The
part geometry is divided into two categories: Primary
geometry, which is defined as an envelope around the part
and which will be generated by a primary process; Secondary
surface- features, which include all the geometry that can
not be produced by a primary process and which will be
generated by machining or other secondary operations. The
designer inputs the description of primary part geometry in
answer to a request from the system. After the primary
process and material combination has been determined, a
problem solver is used to establish secondary process
sequences. The problem solver defines desired secondary
surface features as goal states, and the transient geometry
produced by the chosen primary process as the current
state. It searches for qualified machining operations and
connects them onto the goal as a search tree. An

www.manaraa.com

12
evaluation criterion is added onto the paths as a weighting
factor. The optimal machining sequence which corresponds
to the shortest path can be obtained.

The driving forces for the adoption of Design for
Manufacturing also include such factors as less experienced
personnel, rapid changes in technology, and advances in
computer techniques. Significant improvements can be
expected by applying the Design for Manufacturing approach,
such as smaller number of parts, easy of assembly,
avoidance of special tooling, shorter lead time, cheaper
materials, and more flexibility. The idea of Design for
Manufacturing has gained evdr-increasing national
acceptance [32-38].

2.2 COMPUTER AIDS FOR CONCEPTUAL DESIGN
In mechanical engineering the first step towards CAD

took place in the 1960's with the introduction of computer-
aided drafting systems [39,40]. Three dimensional modeling
techniques have permitted the objects be viewed in a
convenient way and most types of analysis be carried out.
The widespread use and decreasing cost of computers have
brought about a revolution in the practice of engineering
design. Computers can currently aid design in many
ways, such as,

- Finite element analysis systems

www.manaraa.com

13
- Sculptured surface design and manipulation programs
- Volumetric modeling facilities
- Realistic image synthesis
- Computer-aided operation, process and motion planning
- Kinematic and dynamic simulation and analysis.
- Computer-aided NC part programming.
- Computer-aided material selection

However, current CAD systems do not possess the
integrative ability to conduct conceptual design
activities. Classical, algorithmically-based computer
techniques are ill-suited to these problems. The new
techniques of knowledge engineering or AI techniques, such
as expert systems, logic programming, database management
techniques, and so on, provide tools to create effective
computer aids for solving such problems.

In general the design process can be described as a
transformation from function specifications to a physical
layout [2-4,41,42]. Although this general theory captures
the similarities of different design processes at some high
level of abstraction, it does not describe every design
process precisely. It is conceivable that different types
of design may require different approaches. In mechanical
engineering, there is a wide spectrum of functions and many
ways to realize a single function. The problems of how to
define functions and how to find a unique transformation
for defined functions still remains intractable [11,43,44].
Recently, some AI researchers have become interested in
mechanical engineering design and mechanical engineers have

www.manaraa.com

14
also made their contributions. The effort concentrates on
modeling the mechanical design process and developing
rational, scientific design methods [3,7-11,41-50]

Mechanical design is the design of devices and systems
of a mechanical nature - machines, structures, devices and
instruments. Most new mechanical designs in industry today
result from an evolutionary approach. New designs are
usually based upon the 'best' parts, sub-assemblies, or
ideas taken from previous designs. Design alternatives are
generated and evaluated as a process of redesigning the
prototype. However, only a few researchers has recognized
this unique "Re-Design" feature .of mechanical design.
Simmons and Dixon state that design of mechanical parts and
products differs from other designs in several fundamental
ways: material selection, sensitivity to manufacturing
issues, non-modularity, high coupling of form and function,
and especially the role of geometry. They view design as a
hierarchy of nested iterative processes of (1)
decomposition and redecompostion, (2) specification and
respecification, and (3) design and redesign [51,52].
Brown summarizes the design into four phases: Requirements
Phase, Rough Design Phase, Design Phase, and Redesign Phase
[8,9].

Although expert systems are considered thv major AI
tools for engineering design, to date not many systems are

www.manaraa.com

practically in use. XCON(originally named Rl) by DEC,
which configures computers, seems to be the only
commercially successful system [53]. Recent examples in
the mechanical design domain include ACOLADE by Allen, R.H.
et al at University of Houston, an assistant for composite
laminated design [54], and PRIDE by Mittal, S. at Xerox
Palo Alto Research Center, a system creates design for
paper handling machines [47]. Dixon et al are trying to
build up a domain independent design system for various
design tasks, such as injection molding part design and
V-belt pulley design [49,50,55]. More coverage in this
topics can be found in the references [56—61].

The advantages of using language in design processes
has long been recognized. Language, and drawings, are the
most natural media for a designer to express design
intentions and to interact with a design system. Language
is able to provide a sophisticated combination of
convenience, flexibility, expressive power, and reasoning
media. Efforts have been made to use high-level languages
(formal language, natural language, or something in
between) directly in design automation systems. Progress
has already been made in certain design domains. For
example, VHDL (VHSIC) Hardware Design Language has been
adopted as an industry-wide standard for electronic
circuits design [62,63]. The necessity of developing such

www.manaraa.com

16
languages foe mechanical design has been addressed by
several researcher. Ullman et al suggest developing a
machine design language capable of representing
specifications, components, processes, etc [11]. In the
ASME report [6] it is pointed out that the construction of
a design language, complete with axioms and rules for
transformations in manipulation of design models, is
essential to express and manipulate the abstract elements
in the design process [6]. The Design Specialists and
Plans Language (DSPL) for designing air-cylinders developed
by Brown [64,65] is one of the few such languages ever
implemented.

2.3 KNOWLEDGE MANAGEMENT UTILITIES FOR DESIGN
The development of computer aids for conceptual design

will benefit from an effective and intelligent database
management system. The CAD community has recognized the
need to integrate a variety of CAD packages around a common
database. However, early experience with the use of
database management systems in CAD has shown that they
lack many features necessary to an engineering environment,
such as handling of complex objects, handling of
unstructured data of variable length, handling of graphical
data, logical design of semantically rich engineering
database, design-rule checking and consistency constraint
enforcement, and flexible and powerful data models and

www.manaraa.com

17
modifications [66-74].

As an emerging research field, Expert Databases
represent the confluence of research in database, logic,
and artificial intelligence [75]. Compared with expert
systems, expert databases are superior in their ability to
efficiently search and exploit large amounts of data and
in their ability to reason about a whole class of objects
rather than about only a single instance [76]. Compared
with conventional databases, expert databases are rich in
data models, especially abstract data types for knowledge
representation. The common approaches to building up
expert database are the incorporation of alternative data
models into relational databases and the merging of
database system technology and artificial intelligence
technology [77-81].

Our research includes an augmented relational database
developed using the techniques of Expert Databases. The
major extensions made on traditional relational database
are logic programming and virtual relations.

A logic program is a set of clauses of the form

Pg <~ # •.., Pn *

Each p^ is called a literal and has the form p(t^,...,tm),
where p is a predicate symbol and t^, ..., tm are terms.
Terms may be constants, variables, or functions. The term

www.manaraa.com

18
Pg is called the head or conclusion, and pj through p n form
the body or conditions or the clause. A clause with an
empty set of conditions is always true, and it is called an
assertion. A clause with an empty head is interpreted as a
goal, which the system tries to solve using the principles
of resolution [82-87].

A logic program can be considered a natural extension
of the relational database model because many relational
tuples can be expressed as an assertion, or a predicate of
the form p(tx, ..., tm). Thus, it serves as both a
database definition language and as a practical high-level
gueryl anguage. The main contribution of logic programming
to databases is the incorporation of deductive information
[88] .

Virtual relations, representing a type of derived
data, are defined in terms of existing relations. Virtual
relations can be defined most commonly using the syntax of
logic programming [89,90]. A user view of the database is
then the collection of base and virtual relations. Virtual
relations can be defined by means of data abstraction
techniques, which hide the original underlying base
relations. This means that a user generally cannot tell
which relations are base and which are virtual.
Internally, however, only the virtual scheme is stored with
the database and not the relation itself.

www.manaraa.com

CHAPTER 3 FUNCTION DESCRIPTION AND RATIONALIZATION

Research work in the area of automation of conceptual
design has resulted in a prototype of an automated design
system - Function Rationalization System (FRS). This has
been built up based on our new design methodology,
Decomposition-Description-Rationalization, or Design
Rationalization. A design language, Function Description
Language (FDL), has been developed and used in the FRS
system to carry out this design methodology on computers.

3.1 OVERVIEW OF THE FRS SYSTEM
The architecture of the Function Rationalization

System (FRS) is shown in Figure 3.1. The main components
of FRS include an FDL parser, a product data base, an
analysis program, and a library of design rules. The
current version of FRS is written in the C language and
runs at satisfactory speed on a DEC VAX-11/785
minicomputer.

In operation, the FDL parser takes the product
description provided by the user, checks it for syntax and
semantic errors, converts it into a set of relation tables
and stores it in the relational database. The analysis
program, on command from the user, applies rules selected
from the library of design rules to the whole product or
particular modules or components. It detects design

19

www.manaraa.com

20

User supplied FRS

Product
description

Analysis
commands

Design
modifications

rf
4*

FDL Parser

Product
databaseX— f

Analysis Library of
program design rules

Messages
Suggestions
Instructions

Figure 3.1 Function Rationalization System

deficiencies such as redundant functions and/or structures
in the product and outputs diagnostic messages and
suggestions for improving the design. FRS works basically
in an advisory way. It only provides recommendations. The
designer may reject the suggestions, because he knows the
functional purpose of a special feature. He may accept the
suggestion and modify the design accordingly. This
rationalization process may be repeated recursively until
satisfactory results are achieved. In addition,
statistical data will be given to help the designer to
compare the new design with the old ones, such as the total

www.manaraa.com

21
number of parts, the number of part types, and the degree
of function concentration (average number of functions
performed by each "part).

The library provides a set of basic rules for general
users. Advanced users can define their own rules and add
them to the library, so that the system can be adapted to
a user's particular environment.

3.2 DECOMPOSITION-DESCRIPTION-RATIONALIZATION METHOD
As it was mentioned in Section 2.2 most new mechanical

designs in industry today take an evolutionary approach.
New designs are usually based upon the ’best' parts, 'best'
sub-assemblies, or 'best' ideas taken from previous
designs. There are often cases where the structures taken
from a previous design may have parts or functions which
are not needed in the new design. Even essential functions
may not be properly assigned to the components. If this
redundancy is removed, and remaining functions are
re-distributed properly, the structure of the design will
be simpler and better organized. Therefore, a formal
design review can lead to both the enhancement of product
performance and the reduction of production cost. This
review process should take place at critical stages in the
initial design process. It can be carried out in the
following steps,

www.manaraa.com

22
- Decompose a primary design into functional modules and

components
- Describe their functions in a systematic way
- Identify redundancies, overlapping, or mis-assignment of

functions with respect to these descriptions
- Improve design by eliminating the redundancy,

and rearranging remaining functions and further
improvements may be achieved by prompting the designer
for new ideas.

This can be characterized as the 'Decomposition-
Description-Rationalization' approach, or ’Design
Rationalization’.

3.3 FUNCTION DESCRIPTION LANGUAGE
The description of functions of parts and

relationships between components is the essence of this
work. A human engineer uses sentences to specify functions
of parts and the functional relationships between parts.
Using language allows the construction of an infinite
number of sentences from a finite number of syntax rules.
The vocabulary of the language can be extended and this, in
turn, allows the specification of various structures and a
wide spectrum of functions in mechanical products. And
best of all, in-depth information about a design can be
deduced from function description sentences.

For instance the sentence,
’part-X holds part-Y'

www.manaraa.com

23
describes the functional relationship between part 'X' and
part *Y'

From this sentence, a structural hierarchy can be
inferred

module-?
/ \

/ hold \
/ \

X Y
Where 'module' is defined as the ancestor of parts 'x'

and ’y'. This hierarchy implies that the part 'X' and part
'Y' should have the same ancestor in an ideal design.
The actual structures, however, may take another form, as
shown below,

module-1 module-2
/ \ / \

X ... Y
In general, inconsistency between the hierarchy

deduced from function description sentence and the actual
structural hierarchy, will indicate deficiencies in
structure, such as redundancy or mis-assignment of
functions. From that point, a series of design rules can
be applied.

The current natural language processing techniques
still have many problems. On the other hand, the formal
languages in software engineering are able to describe
logic precisely, but their vocabulary is quite limited. A
special language, called Function Description Language

www.manaraa.com

24
(FDL) has been developed as a compromise between these two
aspects. The sentences of FDL resemble English sentences
closely, but without inflection rules on nouns and verbs.
This makes function description sentences quite readable
and reduces the difficulty of implementation tremendously.
At the same time, FDL allows the user to define his own
vocabulary freely which greatly enhances its depictive
power. An additional advantage is that by allowing an
expandable vocabulary, FDL can easily adapt to different
domains. If the terminology of English grammar is used,
the syntax rules of FDL Function Description sentence can
be represented as,

sentence : element_name v_o_phrase
7

v_o_phrase : verb_phrase obj_phrase
7

verb_phrase: verb noun_phrase
7

obj_phrase :
| prep_phrase obj_phrase

prep_phrase: preposition noun_phrase
I 'to' verb noun phrase

nounjphrase: element_name
| element_name function__name

www.manaraa.com

25
The simplest FDL sentence has only three words, a

subject, a verb, and an object. Such as
top hold dial_capsule

The recursive rule allows designers to write complicated
sentences, which include one or more preposition phrases.
Such as,

bearing connect dial_shell to magnet_bar
bracket support compass on cover through top

FDL allows the user to express design concepts and
design intentions in ways much like they are used to. It
also allows the user to interact with the design system
much like they might discuss it with their team workers.
The complete syntax specification of FDL is given in
Appendix A.

www.manaraa.com

CHAPTER 4 PRODUCT DATABASE

A relational data base (RDB) has been chosen as the
basic structure for the product data base in FRS due to its
simplicity, flexibility, and inherent inferencing
capability based on relational algebra. The RDB has been
augmented in two main ways: (1) Hierarchical data
structures can be handled integrally on the top of the
relational data base, and (2) Multiple reasoning mechanisms
have been incorporated into the system in addition to
relational algebra. In the latter area virtual relations
are used to deduce relations that are not explicitly
stored, recursive queries can be processed, and 'IF ...THEN
... ELSE ...' statements are used to gain a better control
over reasoning processes. This feature also allows the
incorporation of data modification operations so that
certain types of design tasks can be actually performed.
As a result, the FRS database possesses many advanced
features of expert systems.

4.1 HIERARCHICAL DESIGN ENTITIES
Mechanical design deals with complex objects, which

are often best represented in terms of hierarchical
structure of entities, as shown in Figure 4.1. However,
the basic data structures supported in relational database
are records or sets of homogeneous records [90]. The

26

www.manaraa.com

27
implementation of a complex object as a collection of
tuples and relations, is a big issue in CAD-oriented
database [91-93].

part_description
// \\

parameter geometry material
/ \

surfacei .. surfacek
dimensions manufacture
Figure 4.1 Hierarchical Description of a Part

FRS provides two predefined data structures for design
entity description, Module Declaration and Component
Declaration.

4.1.1 Module Declaration
A module is a group of elements which are connected

together, (mechanically or otherwise) to perform particular
common functions. A module declaration includes a list of
elements and a group of function description sentences.
The format of a module declaration is,

module name
[element

element_name element_type * quantity;
• • •

function
FDL sentence;
• • •

],*
Here is an example.

www.manaraa.com

28
module compass

[element
compensator;
case;
dial;

function
dial point direction;
compensator compensate environment magnetic_field;
case adjust compass position;

3 ;
An element can be another module, or an individual

part in the conventional sense. In addition, some abstract
items, such as 'magnetic field' in the example, can also be
included in the specification, if they must be considered
in order to fully describe a design. The item 'magnetic
field' is not included in the elements list, because it
considered as an external entity.

The definition of a module is converted into a set of
relation tables. In addition, directories are set up to
keep track of the hierarchies. Here are the storage tables
used for module declaration.

Table name Attribute list
element (module_name, element_name)
element_type (module_name, element_name, element_type)
quantity (module_name, element_name, quantity)
function (module name, FDL sentence)

4.1.2 Storage Of FDL Sentences
The underlying data storages of FRS are relational

tables, in which the number of attributes is fixed.
However, the number of sentence components in FDL can vary

www.manaraa.com

greatly. There is no way to know how many attributes are
needed for storing various sentences. To overcome this
problem, a special scheme for storing FDL sentences has
been developed. Each FDL sentence, no matter how many
words it contains, is stored as a special attribute
'sentence' in relation tables. When some of the sentence
elements, say ’subject' or ’verb’, are referenced, a
secondary parser (It is called 'secondary', in order to
distinguish it from the FDL parser used for initial syntax
checks) is invoked to retrieve the sentence element and
pass it to the application program. From the user's view
point, sentence components are treated just like ordinary
attributes in any relation table.

4.1.3 Component Declaration
Component declaration is a lower-level data structure

for describing a single part. It includes additional
information on a part such as geometry, dimensions,
material, and processes. The format is,
component name

[geometry
shape__name(feature_name = dimension,

• • • •) »
• • •

material
material_name;

manufacture
feature name manufacturing_process;

www.manaraa.com

Here is an example,
component gear

I geometry
gear_head(d = 0.875, h=0.125);
shaft(d =0.0625, length = 0.75);

material
plastic;

manufacture
inject mold;J ;

The items, 'geometry', 'material', in this declaration
are optional. At the beginning, some of these items may
not be defined. As the design proceeds, more and more
details will be worked out and be added. For example, if
two parts are combined, the new features and dimensions
need to be specified. The material and related
manufacturing process may also be changed and should be
specified. The final design should provide a complete
description of both functional and manufacturing issues.

The physical storage for the component declaration
includes the following tables,

Table name Attribute list
parameter (component, parameter)
geometry (component, geometry)
dimensions (component, geometry, dimension, value)
material (component, material)
manufacture (component, geometry, manufacture)

www.manaraa.com

31
4.1.4 Generic Entity

An entity in these declaration can be uniquely
specified by the notation

valuers ... svalue^

Such as,
gear:shaft:length
The nomenclature ’generic entity' is used to refer to

a class of entities. For example, all the geometric
features of the component ’gear’ can be called by using the
notation ’gear:geometry'. Using the notation of generic
entities allows operations on a whole class of objects as
discussed in the next section.

These extensions allow useful concepts from other
paradigms, such as the hierarchical model, to be
incorporated into the relational database while retaining
the high-level user interfaces and the underlying clarity
of a relational model.

4.2 OPERATIONS
Design requires that design entities be manipulated at

the highest possible level of abstraction. That is, each
entity can be treated as a single unit in terms of higher
level operations without knowing explicitly its underlying
data structure. This has been realized in FRS by defining
a set of operations on generic entities and implementing

www.manaraa.com

32
them using more primitive features provided by the
conventional RDB. These are discussed in more detail
below.

4.2.1 Compare With A Value
A Generic entity can be compared with a value.
v x : ... :vk :N BOOLEAN_OPTR V

where 'V' is a given value. BOOLEAN_OPTR may be <, < = , ==,
= , >=, or >. 'N' is an attribute name. When the
operation is executed, each value of attribute 'N* will
retrieved and compared with the given value 'V’.

4.2.2 Compare Two Generic Entities
x^: ... j x^ sNI OPTR y^s ...:ym :N2
There are two cases:

(a) Set Comparison, represented using operators '<=>’ or
'<>'. The values of 'Nl' and the values of 'N2' will be
compared on the base of set equality.

(b) Value Comparison, defined using boolean operators
' = etc. Each value of the attribute ’Nl' will be
compared with every values of the attribute 'N2' on an
individual base.

4.2.3 Generic Comparison
A 'generic entity' stands for one class of objects,

www.manaraa.com

33
the exact number of which may not be known a priori.
Operations on generic entities can be defined in a general
form using the notation,

OPTR(generic_entity)
This is called 'generic comparison*. When it is

applied, each value of the attribute 'N' will be compared
with every other in a combinatorial way. 'OPTR' is a
boolean operator.

4.2.4 Assignment Operations

(a) A value can be assigned to a attribute using the
statement,

Xj: ...:x r :N1 = V

(b) Two entities can be set equal,

Xĵ : ...tx^sNl = y^: ...:yk :N2

where the two attributes 'Nl' and *N2' must be identical.
As a result, the attribute 'Nl' will take all the values
of attribute 'N2'.

4.3 REASONING MECHANISM
In addition to relational algebra, several deductive

mechanisms have been added to the database. All operations
discussed below apply to the relation tables as well as
module declaration and component declaration. That is, the
whole database can be handled by the reasoning mechanism in

www.manaraa.com

34
a consistent way.

4.3.1 'IF conditions THEN actionsl ELSE actions2' Statement
'If_then_else' statements are incorporated into FRS to

represent rule-based knowledge and hierarchical design
logic, and to gain better control over reasoning processes.

(a) Condition Specification And Linguistic Operator
The condition specification in the *if_then_elsef

statement includes the operations discussed in Section 4.2.
In addition, a class of special operators, called
'Linguistic Operator', are defined using the format,

table_name(attribute^=entity^,... ,attributek=entityk)
or
! table_name(attribute^entity-^,... ,attributek=entityk)

Where 'table_name' can be any relation table defined
by the user. The linguistic operator can be used in a
variety of ways. Physically it checks whether some entries
are in a relation table. Logically it epitomizes the
meaning of the entries in the relational table as the name
of the table. For example, a relation table *fixed_
connection' contains the following words.
fixed_relation: x

fasten
support
latch
connect

www.manaraa.com

35
The name of the table, 'fixed_connection', can be

considered as an abstraction of the meanings of the words,
'fasten', ’support’, 'latch', and so on.

(b) Action Specification
The action specification in the *if_then_else'

statement may be a combination of the three types, message,
assignment statement, and 'if_then' statement. Messages
may contain names of entities in an easily readable form.
Assignment statement allows direct manipulation on data
entities. The nested ’IF ... THEN ... ELSE ...’ statements
allows hierarchical logic and a better control over
reasoning processes.

4.3.2 Virtual Relation
A virtual relation is defined by deduction rules and

elementary facts in the RDB. A DEDUCTION RULE has the form

Q.— 1

WHERE
modifications;

where Q is called Virtual Relation, and
P^, ..., Pk are constituent relations,
'Modifications' are additional constraints on the

attributes involved.
If the name of a virtual relation appears on both sides

of a deduction rule, it is recursive, such as,

www.manaraa.com

36
similar(x, y):-

table(x,y);
similar(x, y 5: —

similar(x, y=z),
table (x=*z, y) j

For each recursive relation, there must be at least
two parallel definitions, one of which must be non
recursive and specifies the termination condition of the
recursion. Recursion may be simple transitive closure or
a more complex form [83] . In the current system only
simple recursion is supported.

In FRS virtual relations are used for two main
purposes:

(a) Deduction About Data
Virtual relations can be used to deduce facts and

relations which are not explicitly stored in the database.
For example, function description sentences are stored as a
relation table,

function(subject, verb, object)

and the elements in a module are stored in another table,
element(module, element)
If it is necessary to find out to which module the

'subject* belongs and to which module the 'object' belongs,
a virtual relation 'ancestor' can be defined as,

ancestor(al, subject, a2, object)
element(module=a2, element^object),

www.manaraa.com

37
element(module=al, element=subject),
function(subject, object);

The definition says that if the 'subject' of a
sentence happens to be the attribute 'element' in the table
'element', then the attribute 'module' in the same tuple
is defined as the ancestor of the 'subject*.

(b) Semantic Abstraction
Virtual relations provide a powerful tool for handling

what are called 'abstraction ladders' by semanticists. For
example, if there is a virtual relation 'connection'
defined as,

connection(x)
movable_connection(x);

connection(x)
fixed_connection(x);
The definition says that a word 'x' can be considered

as 'connection' if it is either in the table 'movable_
connection* or in the table ’fixed_connection'. The table
'fixed_connection' is given above and the table 'movable_
connection' is defined as followings,

Table; movable_connection
x
attach
pivot
According to the definition, the meanings of all the

words in these two tables can be considered in the category

www.manaraa.com

of 'connection'. It thus can be considered as a further
abstraction of the ' f ixed__connection' and 'movable_
connection*.

The combination of linguistic operators and virtual
relations provides FRS with even greater flexibility in
handling conceptual information, such as synonyms and
antonyms.

www.manaraa.com

CHAPTER 5 LIBRARY OF DESIGN RULES

FRS provides a set of major principles for design
rationalization. Some of them are summarized from common
engineering practice, and the others are developed
particularly from the features of the FDL language. All
analysis rules are represented in an easily readable
format. By the use of appropriate analysis commands, the
design rules can be selectively applied with different
emphasis at various levels, from a single component to a
complex assembly consisting of many modules. This allows
high level concepts and operations on objects to be defined
and design methodologies to be enforced in a flexible way.
This chapter will discuss some of these principles.
Appendix B lists the analysis rules in the Design Library
of the FRS system.

5.1 ANALYSIS COMMAND AND DESIGN RULE

5.1.1 Analysis Command
Analysis commands causes the system to apply a

particular set of design rules to a particular set of
design entities. The format is,

Analyze
entity-1,
• • •

entity-k
Using

39

www.manaraa.com

40
rule-1,
• • •
rule-m;
The entity may be a particular module, component, or

attribute, or a generic entity. Here is an examples,
Analyze

compensator:gearl,
compensator:gear2

Using
parametric_design;

5.1.2 Design Rule
Design rules may generally be defined in the format,

rule name
I virtual_relation_definition;

• • •
IF condition THEN actionl ELSE action2;
• • •

];
The action specification in the 'if_then_else'

statement may be a combination of the following four types,

(a) Message. This may be diagnostic messages, comments,
suggestions, or instructions.

(b) Assignment. This assigns a value to an attribute,
allowing FRS to do some design tasks directly.

(c) 'if_then_else' statement. This allows further
investigation of the design using a locally defined rule.

(d) Analysis command. This applies another set of rules
from the design rule library. A combination of

www.manaraa.com

41
'if_then_else' statements and analysis commands can allow a
wide variety of hierarchical design investigations.

The use of pseudo variables in design rules, analogous
to that of dummy arguments in programming languages, allows
the names of objects to be integrated with output messages
into an easily readable form. Such as,

rule parametric_design
[if $l:geometry == $2:geometry and

$1rdimensions != $2rdimensions
then

message(Can $1 and $2 be redesigned using
parametric design principle ?);

I
The pseudo variables $1 and $2 are logically

equivalent to the entities set by the analysis command.
Thus the command

ANALYZE
compensator:gearl, compensator:gear2

USING
parametric_design;

will cause '$1' to be substituted by 'gearl* and '$2' by
gear2.

An analysis command can be applied to a whole class of
object by using generic entity notation. Such as,

ANALYZE
compensator:element

USING
parametric_des ign;
The name 'element* here is not a single part, but

refers to all the elements in the module ’compensator*.

www.manaraa.com

42
5.2 THE PRINCIPLES OF DESIGN RATIONALIZATION

5.2.1 Principle Of Modularization
A very important principle of Design Rationalization

is to make the functional hierarchy match the structural
hierarchy. A mixture of hierarchies will cause extra
complexity both in structure and in manufacturing. For
example, two brackets 'A' and 'B' are used to support a
rotating shaft. If 'A* and 'B' belongs to two different
modules, extra caution is needed in machining and assembly
in order that the two brackets are properly aligned.
Therefore this should be avoided. This idea has been
implemented as the rule 'modularization'.

rule modularization
[ancestor(al, el, v, a2, e2):-

element(module=al, element=el),
element(module=a2, element=e2),
function(sub=el, verb = v, obj=e2)

where
ancestorsal = ancestor:a2?

if ancestor(el = $1) then
"— $1 $ancestor:v $ancestor:e2 from another module
$ancestor:a2, can it be modified by modularization
principle ?";

I;
In this rule a virtual relation 'ancestor' is defined.

This is used to determine whether the 'subject' and the
'object' of a sentence belong to the same module. If not,
the structure is considered to violate the principle of
modularization.

www.manaraa.com

43
5.2.2 Elimination Of Direct Chain

An important feature of FDL is that the complexity of
sentence patterns indicates the complexity of the actual
structure. Therefore, by looking at sentence patterns, we
can locate potential problems in structures. For
example, the sentence,

'part-X connect part-Y to part-Z through part-W'

has a pattern which can be summarized as follows,
subject verb object preposition prop__object

This pattern can be identified using the following
rule,

rule direct_chain
{ if function(sub= $1) and function:prepl = _ then

"— Can $1 be eliminated and
Can $function:obj $function:verb $function:pobjl

directly ?
Can $1 be combined with $function:obj or

$function:pobj1
U

The rule says that if a sentence has preposition
phrases, it may have a direct chain structure, which helps
to identify complicated nesting in a design. A variation
of the principle is as follows,
rule direct_restrict

[if fixed_connection(x = $l:function:verb) and
(functionrprepl == by or

function:prepl == through)
then
"— Can $l:functionspobjl be eliminated and

$1 $function:verb $functioncobj directly ?";
U

www.manaraa.com

44
This rule can be used to identify parts which are

connected together permanently. Other chains, including
movable connections and force transfer are not included.

5.2.3 Elimination Of Implied Chain
Simplifying sentence patterns means simplifying the

actual structure. If all the sentence have a simple
pattern, such as 'x verb y', the overall structure will be
much simpler. However, problems may still exist. For
instance, the two sentences, 'x vl y' and *y v2 z' are
independent in syntax, but if 'vl' and 'v2' are synonums a
chain is implied by these two sentences. Considering two
sentences, 'x secure y', and 'y hold z'. If the meanings
of 'secure* and 'hold' are considered similar, then the
structure raises the question 'Can x hold z directly?’.
The associated rule is written as,

rule implied_chain
J chain(x, vl, y, v2, z):-

function{sub=x, verb=vl, obj-y),
function(sub=y, verb=v2, obj=z)

if chain(x=$l) and
(similar_verb(xl = $chain:vl,

x2 = $chain:v2) or
$chain:vl == $chain:v2)

then
"— There is a chain between $1, $chain:y, $chain:z,
Improvement can be made:

1. combing all three together
2. combing two of three, eliminating the third";

I ;
The virtual relation ’chain’ locates all chains. Then

www.manaraa.com

45
the verbs are checked to see whether they are similar or
identical. If such is the case, modification is suggested.

As it was pointed out in Chapter 4, FDL allows the
user to set up his own dictionary, including tables of
synonyms and antonyms. Here, the relation table 'similar_
verb' refers to such a table which contains pairs of verbs
which are considered as synonyms.

5.2.4 Principle Of Function Integration
A smaller number of parts usually means simpler

structure and lower cost. One way to reduce the number of
parts is through the integration of elements which perform
identical or similar functions on the same object. The
resultant complexity in the new parts may be overcome by
employing one of the new processes which enable complex
parts to be produced. This is called 'The Principle of
Function Integration' and is implemented as,

rule integration
[if ==($1:functionsobj) and

(similar_verb(xl = $l:function:verb,
x2 = $2:function:verb) or

==($:function:verb))
then

$list
These elements perform similar function on same

element $1:function:obj, can they be integrated ?";
I;

5.2.5 Principle Of Function Distribution
Sometimes, although two elements share some common

www.manaraa.com

46
functions, they may not be integrated because one of them
may carry multiple functions and can not be simply
eliminated. However, elimination may still be achieved by
distributing those functions to several other elements.
This idea can be implemented as the rule 'distribution',

rule distribution
f if I=($l:functionsverb) and

$1sfunction:verb == $2:function:verb and
$1 :function:obj == $2:function:obj

then
"— $list have common function $1:function:verb on the

same object $1:function:obj, but they cannot be
integrated simply because they have other functions.
However, improvement can be made by redistributing
function $1:function:verb between them.''?

];
The rules 'integration' and 'distribution' can be

combined into one,

rule rationalization
[if ==($l:function:verb) and ==($1:functionsobj)

then
"— $list

These elements perform identical function on same
element $1:function:obj, can they be integrated ?"

else
I if $l:function:verb == $2:function:verb and

$l:function:obj == $2:function:obj then
"— $list have common function $l:function:verb on

the same object $l:function:obj, but they
cannot be integrated simply because they have
other functions. However, improvement can be
made by redistributing function
$1:function:verb between them."

];
1;

www.manaraa.com

47
5.2.6 Principle Of Parametric Design

There are many factors which should also be considered
in establishing the layout of a product. For example, in
engineering practice, if several parts have similar
features and most dimensions of these feature are common, a
generic part can be designed. A family of parts can be
derived from that single design by changing certain
parameters. This is known as the 'Principle of Parametric
Design’ and can be applied in conjunction with Group
Technology for more benefits [94,95]. Similar parts should
be identified and grouped together to take advantages of
their similarities in manufacturing and design. One
implementation of this rule is thus,
rule parametric_design

{ if ==($1:geometry) and
!=($1idimensions)

then
"— $list, these parts share common geometric features,

but different dimensions, different dimensions,
Can they be re-designed using parametric design
principle ?";

];
The following is a modified version of the rule. It

can even list out which dimensions should be used as
parameters in the new part family.
rule parametric_design

[if ==($lsgeometry) and
1 = ($ 1:dimens ions)

then
"— $list, these parts share common geometric features,

www.manaraa.com

48
but differ in dimensions, the following dimensions

can be chosen as parameters of the new part family",
I if $1tdimensions != $1idimensions

then
"$1idimensions";

it
I;

5.2.7 Principle Of Dimension Standardization
If several similar machined features, e.g. holes, are

present in a part, their dimensions should be the same if
possible and should compatible with standard tool sizes.
This will reduce the time needed for tool changing during
processing and reduce the cost of tooling. This is called
the 'Principle of Dimension Standardization'.

rule dimension_standardization
[if !=($1idimensions) and

similar_feature(x = $1, y = $2)
then

"— $list
Can these geometric features use common
dimensions ?";

j;

where 'similar_feature' is a user-defined table, which
lists out in pairs those geometries which are considered
similar.

5.2.8 Principle Of Direct Assembly
Traditionally, assembly problems are dealt with in the

production stage, but assembly efficiency is restricted by
the structures of the product. Therefore, good assembly

www.manaraa.com

49
should be designed into a product rather than planned at
the time of production. In Design Rationalization,
assembly can also be investigated with respect to the
function of components. The following are some rules about
assembly.

rule direct_assembly
I if assembly(x = $1:function:verb) and

$1:function:prepl != _
then
"— Can $1 be eliminated and

$1:functionsobj $l:function:verb $l:function:pobjl
directly ?";I ;

This rule says that if the verb of a sentence is
considered as 'assembly' function and its preposition
phrase is not empty, then it represents.a triple assembly
and improvement can be made by assembling two of the
elements directly.

5.2.9 Principle Of Fastener-Less Assembly
A large amount of time in assembly is devoted to

handling fasteners, such as bolts, nuts, and screws.
Whenever possible, replacing these removable connections
with permanent connections or some other easier ways are
strongly recommended. Such ideas can be implemented as
rule 'Fastener-Less'.

There are several ways to check whether an element is
a fastener: to check whether the verb in the sentence

www.manaraa.com

50
performs 'assembly' function; or to check whether the name
of the subject is a fastener, such as a screw; or to check
whether two objects are assembled together by a fastener.
rule fastener_less

J if fastener(x = $1) or
assembly(x = $1:function:verb) or
fastener(x = $1:function:pobj1)

then
u— £an $i.functionzpobjl be eliminated and

$1 and $function:obj be assembled directly ?";
It

5.2.10 Miscellaneous Rules
There are many other well-proven engineering practices

that can be incorporated into the FRS system. For example,
reducing the number of parts is always a major concern in
simplification, since the smaller the part number, the
simpler a design. This idea is implemented as the rule
'Elimination *,
rule elimination

{ if function(sub = $1)
then

"Can $1 be eliminated, if so, how can function
$1; function:verb on $1: function sob j be preserved ?’’;

I;

If several similar features, say holes, are generated
by different processes, cost may be reduced by machining
these features by the same process if possible. The
following rule confirms this practice.

www.manaraa.com

51
rule less_machining

[if =={$1rmanufacture:geometry) and
i = ($1:manufacture:process)

then
"— $list are similar features,

can they be machined by the same manufacturing
process ?";

J;

Cost may be reduced by using cheaper materials.
rule material cost[i f e x p e n s T v e (x = $ l : m a t e r i a l) t h e n

"— Can $1 be made by cheaper material than
$l:material ?";1;

where the table 'expensive' is user defined, which lists
materials that are considered expensive.

A very important consideration in developing the FRS
was to help designers to do a creative job. In addition to
the rules described above, the system will pose questions
or suggestions to stimulate the designer to develop
creative ideas. Here are some typical questions posed by
the FRS system,
- Can this part assume another shape ?
- Can the surface guality requirements, i.e. tolerance and

roughness, of certain geometric features be relaxed ?
- What alternative material can be used for this part ?

If so, what is the new manufacturing process ?
- Can this part be redesigned using 'Divide-and-Conquer'

principle

www.manaraa.com

CHAPTER 6 AN APPLICATION EXAMPLE

In this chapter an example is discussed in detail to
show how FRS can be applied to helping layout
configurations of mechanical products. Figure 6.1 is the
sketch of a compass which has been analyzed successfully
using FRS. The compass, which is used popularly in cars
and boats, is a product of the Airguide Instrument Co. at
Chicago. Figure 6.1a shows the original design and
Figure 6.1b shows the modified or improved design. When
compared with the initial design the improved design has
about 30% less parts and the number of part types is
reduced by 15%. It is estimated that this will result in a
cost reduction of about 30%.

6.1 DESCRIPTION OF THE INITIAL DESIGN
The initial design of the compass can be decomposed

into three modules: dial_capsule, case, and compensator.
Each of them consists of a number of components.
The following is the description of the initial design.

module compass
I element

case;
compensator?
dial_capsule?

function
case adjust compass position;
compensator compensate environment

magnetic_field;
52

www.manaraa.com

■capsule
• bearing
dial_shell
magnet_bar
needle
needle_base
plate

cover
gearlgear2

spring_washer1spring_washer2
cup
gear3 gear4spring_washer3spring_washer4
bottom

a

capsule

dial_shell
magnet_bar
needle_plate

bottom

bracket

Figure 6.1 The Initial Design(a) and Modified Design(b) of a Compass

bracket

www.manaraa.com

dial capsule display direction?1 ;
module compensator

I element
cover;
cup?
spring_washerl?
spring_washer2;
spring_washer3;
spring_washer4 ?
gearl

I geometry
gear_head(d = 0.875,

h = 0.125);
shaft(d = 0.0625,

1 a 0.75);
1;

gear2
£ geometry

gear__head(d = 0.875,
h » 0.125); '

shaft(d = 0.0625,
1 = 0.1875);

I;gear3
[geometry

gear head(d a 0.875,
h = 0.125);

shaft(d = 0.0625,
1 = 0.5);

S;
gear4

£ geometry
gear_head(d = 0.875,

h = 0.125);
shaft(d a 0.0625,

1 = 0.1875);
1;

function
cup hold spring_washerl?
cup hold spring_washer2;
spring_washerl restrict gearl

vertical_motion?
spring_washer2 restrict gear2

verticaljmotion;
spring_washerl damp gearl rotation
spring_washer2 damp gear2 rotation

www.manaraa.com

cover constrain gearl;
cover constrain gear2;
cup constrain gear3;
cup constrain gear4;
spring_washer3 restrict gear3

vertical_motion;
spring_washer4 restrict gear4

vertical_motion;
spring_washer3 damp gear3 rotation
spring_washer4 damp gear4 rotation

module case
I element

top;
bottom;
bracket;

function
top hold dial_capsule;
bracket connect cover by screw;
bracket support compass on cover

through top;
bracket adjust compass position

on cover;
bottom fix cover;
top connect bottom through cover;
bottom hold cup;
bottom hold spring_washer3;
bottom hold spring_washer4;
bottom hold gear3;
bottom hold gear4;

module dial_capsule
I element

capsule;
plate;
needle_base;
dial shell;
bearing;
magnet_bar;
needle;

function
capsule contain liquid;
needle pivot bearing;
needle_base hold needle;
plate constrain needle_base;
bearing connect dial_shell

www.manaraa.com

t o m a g n e t _ b a r .
1;

6.2 OUTPUT MESSAGES OP PRS
A number of different rules were applied to the

compass by using appropriate analysis commands. A detailed
list of input and output of FRS for analyzing the compass
is given in Appendix C.

In this section a number of typical commands and
outputs will be discussed in detail.

(a) Apply Rule Modularization
Here are some output of the messages by applying rule

Modularization,
- bottom hold cup from another module

compensator, can they be modified by
modularization principle ?

- bottom hold gear3 from another
module compensator, can they be
modified by modularization principle?

- bottom hold spring_washer3 from
another module compensator, can they
be modified by modularization
principle ?

- bottom hold cover from another module
compensator, can it be modified by
modularization principle ?

As shown in Figure 6.1a, the cup is put in the bottom
first, washers and gears are put into the cup in sequence,
and then the cover is fixed by screws onto the bottom.
Using the module case to support several individual parts

www.manaraa.com

57
in another module compensator is identified as a potential
problem. Improvements can be made by making the design
modular. For example, the module 'compensator' can be made
self-contained and can be mounted into the module
'case' simply.

(b) Apply Rule Direct Chain
Here are some output of the messages by applying the

rule Direct chain,
- Can top connect bottom directly ?
- Can bracket support compass directly ?
- Can bracket adjust compass position

directly ?
In the initial design, the connection between 'top'

and 'bottom' in module 'case' is complicated. 'Top' is
connected to the 'cover' of another module 'compensator' by
a screw, and the 'cover' is connect to the ’bottom' by
another screw. The system identifies this nesting and
suggests a direct connection between the 'top' and the
'bottom'.

(c) Apply Rule Implied_chain
Here are some output messages generated by applying

the rule Implied Chain,
- There is a chain between plate

'constrain needle^base' and
'needle_base hold needle', can
they be simplified ?

www.manaraa.com

58
In the Figure 6.1a plate 'constrain' the needle_base,

and needle_base 'hold' needle. This is identified as an
implied chain because 'constrain' and 'hold' are considered
synonyms.

(d) Apply Rule Direct Assembly
Here are some output of the messages by applying the

rule Direct assembly,
- Can bearing be eliminated and

dial_shell and magnet_bar be
assembled together directly ?

In the original design, the 'bearing* functions like a
rivet. It connects dial_shell and magnet_bar together.
Riveting is a time-consuming operation. An improvement is
suggested by connecting the magnetic bar and dial_shell
directly.

(e) Apply Rule Parametric Design
Here are some output of the messages by applying the

rule Parametric design,
- compensatorsgearl, compensator:gear2

shares common geometric feature, but
different dimensions, Can they be
re-designed using parametric design
principle ?

- compensatorsgearl, compensator:gear3
shares common geometric feature, but
different dimensions, Can they be
re-designed using parametric design
principle ?

In the initial design, there are four gears, each

www.manaraa.com

59
carrying a small magnet. The detailed drawings of these
gears are in Figure 6.2. The rule 'parametric design'
identifies that gearl, gear2, and gear3 have common feature
but different dimensions and suggests a re-design.

gearlgear3

Figure 6.2 The Initial Design of Gears

(f) Apply Rule Fastener Less Assembly
Here are some output messages generated by applying

the rule Fastener less,
- Can screw be eliminated and bracket

connect bottom directly ?
If so, how bracket adjust compass
position on cover ?

The rule found out that there are screws in the design
performing the fastening function and elimination is
suggested.

6.3 DESCRIPTION OF MODIFIED DESIGN
The following is the description of the modified

design of the compass.

www.manaraa.com

module compass
I element

case;
dial_capsule;

function "
dial_capsule display direction;
case compensate environment

magneticefield;
case adjust compass position;

module dial
I element

needle_plate;
I geometry

needle;
plate;

U
dial_shell;
magnet_bar

I geometry
bearing_hole;

manufacture
powder_metallurgy;I ?

function
needle_plate pivot magnet_bar;
magnet_bar point direction;
magnet connect dial_shell;

I;
module case

{ element
gl: gear(shaft:length = 0.835);
g2; gear(shaftslength = 0.835);
g3: gear(shaftslength = 0.36);
g4: gear(shaftslength = 0.36);
bracket;
bottom;
top;

function
bracket support top to adjust

compass position;
bottom connect top by adhesive;
bottom hold gl;
bottom hold g2;
bottom hold g3;

www.manaraa.com

61
bottom hold g4;
bottom restrict gl vertical_motion;
bottom restrict g2 vertical_motion;
bottom restrict g3 vertical_motion;
bottom restrict g4 vertical_motion;
bottom damp gl rotation;
bottom damp g2 rotation;
bottom damp g3 rotation;
bottom damp g4 rotation;

I ?
There are several major improvements in the new

design. The number of modules is reduced while all the
essential functions of the compass are preserved. In the
module 'case', 'top* is now snapped onto 'bottom' directly.
The 'bracket' is connected to the 'top' also by snapping.
There are no screws in the new design. The spring washers,
cups, and covers are also eliminated. The gears are
mounted in the bottom directly. The split-end of the gear
shafts restrict the both rotation and vertical movement of
the gears (Figure 6.3). The bearing is integrated with the
magnetic bar. The resultant complex geometry can be
generated by using the powder-metallurgy technique. As a
result, the dial-shell can simply be pressed onto the
magnet bar.

FRS supports parametric design also by allowing
generic components. In the original design, four gears
have most their dimensions in common, and a generic
component 'gear' is created in the new design. The
declaration of the generic component 'gear' is given below.
Gl, g2, G3, and G4 are its variations.

www.manaraa.com

62
component gear(shaft:length)

[geometry
gear_head(d=0.5, h=0.1);
sha£t(d =0.0625, length = 0.1875);
slot(width = 0.02, length = 0.2)

£ damp gear rotation };
rim_edge(diameter = 0.07)

I restrict gear vertical_motion };
material

plastic;
manufacture

inject mold;
}

In the module 'case', the components gl, g2, g3, and
g4 are now treated as instantiations of the generic
component 'gear' and their designs can be derived by
substituting the value of the parameter 'shaft:length*.

Figure 6.3 Modified Design of Gear

www.manaraa.com

CHAPTER 7 SUMMARY AND FURTHER WORK

7.1 ACHIEVEMENTS AND LIMITATIONS
FDL is the first mechanical design language which

allows computer layout configurations of mechanical
products at the conceptual design stage. A number of test
products have been analyzed using FRS [96,97]. In general
these trials have yielded useful results though new users
tend to need help in developing useful product descriptions
and analysis commands.

FRS provides a flexible way to express abstract design
concepts. FRS provides a logical way to integrate design
activities, such that functional specifications and
manufacturing constraints can be considered simultaneously.
FRS also provides a natural and versatile way for
human/machine interaction. By allowing users to define
their own vocabulary and parsing rules, FRS can be readily
adapted to the users' particular needs.

FRS enables designers to express design intentions and
design concepts at higher abstract levels. As a result,
mechanical design can be carried out by computers in a way
that resembles human cognitive processes closer than ever
before.

FRS, however, was not intended to be a fully
"automatic" design system, which is still far beyond our

63

www.manaraa.com

64
ability at this moment. Therefore, the quality of designs
generated with FRS still largely depends on the factors
crucial in any design environment, the knowledge and the
creativity of engineers.

7.2 FOTURE WORK
What we have done so far indicates that a design

language is an effective way of approaching design
automation. However, this framework can be improved in
many aspects,

(1) The FRS system has been used in our Computer-integrated
Manufacturing classes for several quarters. It is found
that for users with little experience in design, guidelines
are needed to help in decomposing a product and writing
function sentences.

(2) More design rules need to be developed involving
different aspects of design, such as, manufacturing
considerations, common mechanical design practices, and the
particular features of FDL.

(3) The scope of the system should be extended. At a
higher level, it should be able to deal with function of
modules, and at a lower level, it should be able to deal
with features of the parts. In order to do this, a direct
connection between 3-D geometric representation and

www.manaraa.com

6 5
high-level functional description is needed.

In conceptual analyses, many relations are reviewed,
such as kinematics and force balance. FRS can also be used
in these analyses.

(4) To increase the power of FDL, more flexible and more
extensive data models are needed for the diverse types of
data present in a CAD/CAM environment.

(5) FRS allows the user to define his own vocabulary and
parsing rules. Therefore, the maintenance of the integrity
and the consistency are crucial to the future system.

In general, the author believes that further work in
improving FDL and developing design languages for machine
design will be useful in a variety of ways. In addition to
providing a series of software tools which will be of
direct benefit to the industrial designer, it will help
further the course of design automation. It will improve
our understanding of the complex processes involved in
design, and will eventually lead to a sound science base
for the 'art' of design.

www.manaraa.com

REFERENCES

1. Dieter, G.E., "Engineering Design - A Materials and
Processing Approach", McGraw-Hill Inc., NY, 1983.

2. Dixon, J.R., "Design Engineering: Inventiveness,
Analysis, and Decision Making", McGraw-Hill, Inc.,
New York, 1966

3. Dixon, J. R., "Artificial Intelligence and Design: A
Mechanical Engineering View", Proc. 5th AAAI, 1986,
872-877.

4. Shigley, Joseph E.,"Mechanical Engineering Design", 3rd,
McGraw-Hill, Inc., New York, 1977.

5. Wolfe, R.N., et al, "Solid Modelling for Production
Design", IBM. J. Res. Develop., Vol. 31, No. 3,
May 1987, 277-295.

6. ASME, "Goals and Priorities for Research in Engineering
Design - A Report to the Design Research Community",
Dearborn, MI, 1986.

7. Allen, R.H., et al, "Using Hybrid Expert System
Approaches for Engineering Applications", Engineering
with Computers, Vol. 2, No. 2, Mar. 1987, 95-110.

8. Brown, D.C., "Capturing Mechanical Design Knowledge",
Proc, 1985 ASME Computer in Engineering Conf., Boston,
MA, Aug. 1985.

9. Brown, D. C. and Chandrasekaran, B., "Knowledge and
Control for a Mechanical Design Expert System", IEEE
Computer, Vol. 19, No. 7, July 1986, 92-100.

10. Mostow, J., "Toward Better Models of The Design
Process", The Al Magazine, Vol. 17, No. 1, Spring 1985,
44-57.

11. Ullman, D.G. and Diettrich, T.A., "Mechanical Design
Methodology: Implications on Future Developments of
Computer- Aided Design and Knowledge-Based Systems",
Engineering with Computers, Vol. 2, No. 1, Jan. 1987,
21-29.

12. "Flexible Manufacturing systems Handbook", The Charles
Stark Draper Laboratory, Inc., Noyes Pub., Park Ridge,
NJ, 1984.

66

www.manaraa.com

67
13. Groover, Mikell P. and Emory W. Zimmers, Jr., "CAD/CAM

Computer-Aided Design and Manufacturing",
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

14. Harvany, J., Newman, W . , and Sabin, M., "World Survey
of CAD", CAD, Vol. 9, No. 2, Apr. 1977, 79-98.

15. Hatvany, J., "Computer-Aided Manufacture", CAD,
Vol. 16, No. 3, May 1984, 161-165.

16. Eary, D. F., "Process Selection — Key to Profit: Part
1 — Six Steps to Process Analysis", The Tool and
Manufacturing Enginner, Vol. 56, No. 4, Apr. 1966, 40-4

17. Eary, D. F., "Process Selection — Key to Profit: Part
2 — Process Analysis", The Tool and Manufacturing
Engg., Vol. 56, No. 5, May 1966, 80-83.

18. Boothroyd, G . , and Redford, A. H . , "Mechanized
Assembly", McGraw-Hill Publishing Co. Ltd., Maidenhead,
Berkshire, England, 1966.

19. Baldwin, S. P., "How to Make Sure of Easy Assembly",
The Tool and Manufacturing Engr., vol. 56, No. 5,
May 1966, 76-78.

20. Boothroyd, G . , and Dewhurst, P., "Design for Assembly -
A Designer's Handbook", Dept, of Mech. Engr., Univ. of
Mass., Amherst, MA, 1983.

21. Boothroyd, G., and Dewhurst, P., "Design for Assembly:
Selecting the Right Method", Machine Design, Vol. 21,
No. 11, Nov. 1983, 94-98.

22. Boothroyd, G., and Dewhurst, P., "Design for Assembly:
Manual Assembly", Machine Design, Vol. 21, No. 12,
Dec. 1983, 140-145.

23. Boothroyd, G., and Dewhurst, P., "Design for Assembly:
Automatic Assembly", Machine Design, Vol. 21,
No. 1, Jan. 1984, 87-92.

24. Boothroyd, G . , and Dewhurst, P., "Design for Assembly:
Robots", Machine Design, Vol. 21, No. 12, Feb. 1984,
72-76.

www.manaraa.com

68
25. Bradyhouse, Richard G . , "Design for Assembly and Value

Engineering Helping You Design Your Product for Easy
Assembly", Proc. 1984 SAVE Conf., 14-23.

26. Jakiela, M., Papalambros, P., and Ulsoy, A. G . ,
"Programming Optimal Suggestions in The Design Concept
Phase: Application to the Boothroyd Assembly Charts",
J. Mech. Trans. Auto. Design, Vol. 107, Jun. 1985,
285-291.

27. Lund, T. and S. Kahler, "Product Design for Automatic
Assembly", Programmable Assembly, W. B. Heginbotham
(ed), IFS{Pub.) Ltd., UK., Springer-Verlay, 1984,
53-81.

28. Dargie, P. P., K. Parmeshwar, and W. R. D. Wilson,
"MAPS-1: Computer-Aided Design System for Preliminary
Material and Manufacturing Process Selection", ASME
Trans. J. Mech. Design, Vol. 104, 1982, 126-136.

29. Miaw, D. C. and Wilson, W. R. D., "Use of Figures of
Merit in Computer-Aided Material and Manufacturing
Process Selection", J. Mechnical Design, 1982, 806-815.

30. Lai, K. and Wilson, W. R. D., "Computer Aided Material
Selection and Process Planning", Proc. 13-th NAMRC,
Berkeley, CA., May 1985, 505-508.

31. Bittence, John C., "When Computers Select Materials",
Materials Engineering, Vol. 100, No. 1, Jan. 1983,
38-42.

32. Bittence, John C., "Property Data Bases are Coming Your
Way", Material Engineering, Aug. 1984, 40-45.

33. Chao, Nieh-Hua, "The Application of A Knowledge-Based
System to Design For Manufacture", 1985 IEEE Intl.
Conf. Robotics and Automation, IEEE Computer Society
Press, Silver Spring, MD, 182-185.

34. Dwivedi, S. N., and Klein, B. R., "Design for
Manufacturability Makes Dollars and Sense", CIM Review,
Vol. 3, No. 1, Spring 1986, 53-59.

35. Harrington, J.Jr., "Understanding the Manufacturing
Process: Key to Successful CAD/CAM Implementation",
Marcel Dekker, Inc., New York, 1984.

36. Kilhoffer, A. R. and Kempf, K. G., "Designing for
Manufacturability in Riveted Joints", Proc. 5th AAAI,

www.manaraa.com

6 9
1986, 820-824.

37. Mcalpine, G., "CAD Based - Manufacture of Parts", Proc.
1985 IEEE Int. Conf. Robotics and Automation, IEEE
Computer Press, Silver Spring, MD., 1985, 389-390.

38. Requicha, Aristides A. G., "Representations for Rigid
Solids: Theory, Methods, and Systems", Computing
Surveys, Vol. 12, No. 3, May 1980, 437-464.

39. Requicha, A. A. G. and Voelcker, H. B., "Solid
Modeling: A Historical Summary and Contemporary
Assessment", IEEE CG&A, Vol. 2, No. 3, Mar. 1982, 9-23.

40. Asimov, M., "Introduction to Design", Prentice Hall
Pub. Inc., Englewood Cliffs, NJ, 1962.

41. Eastman, C. M., "Recent Developments in Representation
in the Science of Design", Proc. 18th Design Automation
Conf., 1981, 13-21.

42. Yoshikawa, H., "General Design Theory and a CAD
System", Man-Machine communication in CAD/CAM,
North-Holland, 1981.

43. Yoshikawa, Hiroyuki, "Automation of Thinking in
Design", Computer Applications in Production and
Engineering, E. A. Warman (ed), North-Holland Pub. Co.,
Amsterdam, Holland, 1983. 405-417.

44. Freeman, P., and Newell, A., "A Model for Functional
Reasoning in Design", Proc. 2nd Int. conf. Al, London,
England, 1971. 621-633.

45. Fulton, R. E., "A Framework for Innovation", CIME, Vol.
5, No. 2, Mar. 1987, 26-40.

46. Mistree, F. and Muster, D., "The Decision Support
Problem Techniques for Design", Proc. 1986 ASEE, 1986,
117-125.

47. Mitchell, T., Steinberg, L. and Shulman, J., "A
Knowledge-Based Approach To Design", IEEE Trans,
Pattern Analysis and Machine Intelligence, Vol. 7,
No. 5, Sep. 1985, 502-510.

48. Mittal, S. and Araya, A., "A Knowledge-Based Framework
for Design", Proc. 5th AAAI, 1986, 856-865.

www.manaraa.com

70
49. Nadler, Gerald, "Systems Methodology and Design",

Mechanical Engineering, Vol. 108, No. 9, Sep. 1986,
84-88.

50. Dixon, J. R., et al, K., "Dominic I: Progresss Toward
Domain Indepenedence in Design By Iterative Redesign",
Engineering with Computers, Vol. 2, No. 1, Jan. 1987,
137-145.

51. Dixon, J. R., et al, "Expert Systems for Mechanical
Design: Examples of Symbolic Representations of Design
Geometries", Engineering with Computers, Vol. 2, No. 2,
Mar. 1987, 1-10.

52. McDermott, J., "Rl: A Rule-based Configurer of Computer
Systems", Al Magazine, Vol. 19, No. 1, Jan. 1982,
39-88.

53. Allen, R.H., "Design Guidelines for Expert Systems",
Applications of Artificial Intelligence to Engineering
Problems, Boarnet, Sriram, D. and Adey, R., (eds),
Berlin, Heidelberg, New York, Springer, 651-658.

54. Vaghul, M., et al, "Expert Systems in a CAD
Environment: Injection Molding Part Design as an
Example", Proc. 1985 ASME Computers in Mechanical
Engineering Conf., Boston, MA, Aug. 1985.

55. Proc. 1985 ASME Computer in Engineering Conf., Boston,
MA, Aug. 1985.

56. Chandrasekaran, B., "Generic Tasks in Knowledge-Based
Reasoning: Characterizing and Designing Expert Systems
at the Right Level of Abstraction", Proc. IEEE Intl.
Conf. on Al Applications, Dec. 1985.

57. Dym, C.L.,(ed), "Applications of Knowledge-Based
Systems to Engineering Analysis and Design", ASME, New
York, 1985.

58. Gero, J. S., "Bibliography of Books on Artificial
Intelligence with Particular Reference to Expert
Systems and Knowledge Engineering", CAD, Vol. 17, No.
9, Nov 1985, 463-464.

59. "Research in Progress on Knowledge-Based Engineering
Systems", IEEE Software, Vol. 3, No. 3, Mar. 1986,
48-60.

www.manaraa.com

71
60. Wright, P.K. and Bourne, D.A., "Manufacturing

Intelligence", Addison-Wesley Pub. Inc., Reading, MA,
1988.

61. Agrawal, V. D., "The Linguistics of Design and Test",
IEEE Design & Text, Vol. 1, No. 4, Apr. 1986, 8.

62. Nash, J.D., "Bibliography of Hardware Description
Languages", ACM SIGDA Newsletters, Vol. 14, No. 1,
Feb., 1984, 18-37.

63. Brown, D. C. and Chandrasekaran, B., "An Approach to
Expert Systems for Mechanical Design", Proc. 1983 Conf.
Trends. Applications Computer, 173-180.

64. Brown, D.C. and Chandrasakeran, B., "Expert Systems for
a Class of Mechanical Design Activity", Proc. IFIP
WG5.2 Working Conf. on Knowledge Engineering in
Computer Aided Design, Budapest, Hungary, 1984.

65. Buchmann, Alejandro P., "Current Trends in CAD Data
base", CAD, Vol. 16, No. 1, Jan. 1984, 123-126.

66. Eastman, C. M., "System Facilities for CAD Databses”,
Proc. 17th Design Automation conf., Jun. 1980, 50-56.'

67. Eastman, C.M., "Database Facilities for Engineering
Design", Proc. IEEE, Vo. 69, No. 10, Oct. 1981,
1249-1263.

68. Guttman, A. and Stonebraker, M . , "Using a Relational
Database Management System for Computer Aided Design
Data", IEEE Database Engineering Bulletin, Vol. 5, No.
2, June 1982, 21-28.

69. Hardwick, M., "Extending the Relational Data Model for
Design Applications", Proc. 21st DAC, 1984.

70. Hartzband, David J., "Enhancing Knowledge
Representation in Engineering Databases", IEEE
Computer, Vol. 18, No. 9, Sep. 1985, 39-48.

71. Kellogg, C., "Intelligent Assistants for Knowledge and
Information Resource Management", Proc. 8th IJCAI,
1983, 170-173.

72. Kellogg, C., "From data Management to Knowledge
Management", IEEE Computer, Vol. 19, No. 9, Sep. 1986,
75-84.

www.manaraa.com

72
73. Rehak, D. H., and Howrad, H. C, "Interfacing Expert

Systems with Design Database in Integrated CAD
Systems", CAD, Vol. 17, No. 9, Sep. 1985, 443-454.

74. Kerschberg, L., (ed) "Expert Database Systems", Menlo
Park, Ca, Cummings Pub., 1985.

75. Bic, Lubomir and Jonathan P. Gilbert, "Learning from
Al: New Trends in Database Technology", IEEE Computer,
Vol. 19, No. 3, Mar. 1986, 44-54.

76. Codd, E.F., "Extending the Database Relational Model to
Capture More Meaning", ACM Trans. Database Systems,
Vol. 4, No. 4, Dec. 1979, 397-434.

77. Fuchi, Kazuhiro, "Aiming for Knowledge Information
Processing Systems", Logic Programming and its
Applications, (ed) Michel van Caneghem and David H. D.
Warren, Ablex Publishing Corporation, Norwood, NJ,
1986, 279-305.

78. Haskin, R.L. and Lorie, R., "On Extending the Functions
of a Relational Database System", Proc. 1982 ACM SIGMOD
Intl. Conf. Management of Data, June 1982, 207-212.

79. Smith, J.M. and Smith, D.C., "Data Abstractions:
Aggregation and Generalization", ACM Trans. Database
Systems, Vol. 2, No. 2, Jun. 1977, 105-133.

80. Wiederhold, G . , "Knowledge and Database Management",
IEEE Software, Vol. 1, No. 1, Jan. 1984, 63-73.

81. Lloyd, J.W., "Fundations of Logic Programming",
Springer-Verlag Pub., Heidelberg, 1984.

82. Dahl, V., "On Database Systems Development Through
Logic", ACM Trans. Database Systems, Vol. 7, No. 1,
Mar. 1982, 102-123.

83. Gallaire, H. and Minker, J., (eds.), "Logic and Data
Bases", Plenum Press, New York, 1978.

84. Gallaire, H. et al (Eds), Advances in Data Base Theory,
Vol. 1, Plenum Press, New York, 1981.

85. Gallaire, H., Minker, J., and Nicolas, J.-M., "Logic
and Databases: A Deductive Approach", ACM Computing
Surveys, Vol. 16, No. 1, Jan. 1984, 153-185.

www.manaraa.com

73
86. Korth, H, F., "Extending the Scope of Relational

Language", IEEE Software, Vol. 3, No. 1, Jan. 1986,
19-28.

87. Oilman, J. D., "Implementation of Logical Query
Languages for Databases", ACM Trans. Database Systems,
Vol. 10, No. 3, Sep. 1985, 289-321.

88. Henschen, L. and Naqvi, S., "On Compiling Queries in
Recursive First-Order Databases", J. ACM, Vol. 31,
No. 1, Jan. 1984, 47-85.

89. Zaniolo, C., "The Representation and Deductive
Retrieval of Complex Objects", Proc. VLDB 85,
Stockholm, Aug. 1985, 458-469.

90. Date, C.J., "An Introduction to Database Systems",
(3rd)., Addison-Wesley, Reading, MA, 1981.

91. Bancilhon, F. and Khoshafian, S., "A Calculus for
Complex Objects", Proc. ACM SIGACT/SIGMOD Symposium on
Principles of Database Systems, Cambridge, MA, 1986.

92. Lorie, R. A. and Plouffe, W . , "Complex Objects and
Their Use in Design Transactions", Proc. 1983 IEEE
Annual Meeting - Database week, 1983, 115-121.

93. Patrick, V., Khoshafian, S., and Copeland, G.,
"Implementation Techniques of Complex Objects", Proc.
12th Intl. Conf. VLDB, Kyoto, Aug. 1986. 101-110.

94. Gallagher, C.C. and Knight, W.A., "Group Technology",
Butterworths, London, 1973.

95. Wilson, R. and Henry, R., "Introduction to Group
Technology in Manufacturing and Engineering", SME,
Dearborn, MI, 1980.

96. Lai, K., "Mechanical Design Simplification Using
Function Description Language", Proc. 15th North
American Manufacturing Research Conference(NAMRC),
May 1987, 615-620.

97. Lai, K. Lai and W.R.D. Wilson, "FDL - A Language for
Function Analysis and Rationalization in Mechanical
Design", Proc. 1987 ASME Intl. Conf. Computers in
Engineering, New York, Aug. 1987, 87-94.

www.manaraa.com

APPENDIX 1 GRAMMER OF FUNCTION DESCRIPTION LANGUAGEi

FDL : table_manipulat ion
component_declarat ion
module_declaration
vitual_relation_definition
analys is_comnand
designjrule

name, value : string

table_manipulation
: DEFVERB string ';'
DEFPREP string
DEFPROC string
DEFTAB string *(' attributes ')' ';’
ADDTAB string '(’ values ')' ';'

attributes

values

name
attributes ',’ nan®

values value
value

cccnponent_declaratiort
: COMPONENT head ccmponent_body

head : name '(' parameters ')'
*

parameters
parameters ',' entity
entity

entity : entity ’:’ nan®

ccmponent_body
: ' [' geantry_specification

material_specification
manufacturejspeci ficationT

74

www.manaraa.com

75
geantry_specif ication

: GEOMETRY surfaces f;'

surfaces : surfaces ';' surface
I surface

surface : name ’(' dimensions ')' usage
/

dimensions :
dimensions ', * dimension
dimension

dimension

usage

v_o_phrases

feature '=' value

' I' v_o_phrases 'J'

v_o_phrases ';' v_o__phrase
v_o_phrase

material_specif ication
j MATERIAL name ’ ;

manufacturejspecification
MANUFACTURE processes ';'

processes

process

processes ';' process
process

verb_phrase

module_declaration
: MODULE name module_body ';'

www.manaraa.com

76
module_body : 'J’ element_list

function specfication

element_list
: ELEMENT element specifications ’;

elamentjspecifications
element_specifications ';' element_specification
element specification

element_specif ication
: name quantifier
ccmponent_declarat ion quantifier
component instantiation quantifier

component^ nstantiation
: name ':' ccmponent_type '(’ parameter_ass ignments *)

canponentjtype
: string

quantifier :
| '*' string

funct ion_specf ication
: FUNCTION sentences ’;'

sentences : sentences ’;' sentence
I sentence

sentence : string v_o_phrase

v_ojphrase : verb_phrase obj_phrase
| verb_phrase adv_phrase

noun_phrase : nounjphrase string
| string

www.manaraa.com

obj_phrase :
| prepjphrase obj jphrase

prep_phrase : PREP noun_phrase
7

advjrfirase : 'to' VERB nounjphrase
7

verb phrase : VERB noun phrase

vitual_relation_definition
: relation_name '(' attributes ')* '

canponent_relations
modification ’j '

canponent_relat ions
: component_relations ',' component_relation
| component relation

component_relation
; name ’(' attribute_assignments *)’

attribute_ass ignments
: attribute_assignments ',*
attribute_assignment

| attribute_assignment

attribute_ass ignment
name
name

modification

constraints

WHERE constraints

'(' constraints ')'
constraints AND constraints
constraints OR constraints
NOT constraints
constraint

www.manaraa.com

constraint : entity rel_optr entity_derivation

entity_derivation
entity math_optr value

entity
entity
value

math optr

rel optr
* i =•
*<=•
'<•

'»*

/* set equality '*/
/* set enclousure */

analys is_cannand
: ANALYZE entities USING rules •;'

entities : entities entity
| entity

rules : rules ',1 rule
I rule

rule : name
| rule_definition

design rule : RULE name rule definition 1?'

www.manaraa.com

79
rule_def inition

: 'V virtual_relat ion_def i n it ions
if then sentences

•v

if_then_sentences
: if_then_sentences ';' if_then_sentence
I if then sentence

if_then_sentence
: IF conditions THEN actions
| IF conditions THEN actions ELSE actions

conditions : '(' conditions ’)'
conditions AND conditions
conditions OR conditions
NOT conditions
condition

condition : entity rel_optr entity_derivation
| ling_cptr '(' attribute_assignments ')1

ling optr : string
| '!' string

actions : actions ',’ action
I action

action
MSG
' I' analysis_camiand ' J'
'I' if then sentence ' j'

www.manaraa.com

APPENDIX B DESIGN RULES

rule modularization
I ancestor(al, el, v, a2, e2):-

element(module=al, element=el),
element(module=a2, element=e2),
function(sub=el, verb * v, obj=e2)

where
ancestor:al != ancestor:a2;

if ancestor(el = $1)
then

"— $1 $ancestor:v $ancestor:e2 from another module
$ancestorsa2, can it be modified by modularization
principle

];
rule integration

£ if « ($ 1 :function:obj) and
similar_function(xl = $l:function:verb,

x2 = $2:function:verb)
then

"— $list, They perform identical function on same
element $l:function:obj, can they be integerated ?",

"— If $1 is eliminated, how $l:function:obj be
$1:function:verb ?",

"— If $2 is eliminated, how $2:function:obj be
$2:function:verb ?";

I }

rule distribution
(if !=($1:function:verb) and

$l:function:verb == $2:function:verb and
$1:function:obj == $2:function:obj

then
"— $list have common function $1:function:verb on the same

object $l:function:obj, but they cannot be integrated
simply because they have other functions. However,
improvement can be made by redistributing function
$1:function:verb between them.";

J ;
rule rationalization
I if =={$l:function:verb) and ==($l:function:obj)

then
$list
They perform identical function on same element
$l:function:obj, can they be integerated ?"

else
80

www.manaraa.com

81
I if $1:function:verb == $2:function:verb and

$1:function:obj == $2:function:obj
then
"— $list have common function $1:function:verb on

the same object $1:function:obj, but they cannot
be integrated simply because they have other
functions. However, improvement can be made by
redistributing function $1:function:verb between
them."

!;
];
rule parametric_design
I if ==($1;geometry) and

! = ($1:d imens ions)
then

"— $list shares common geometric feature, but different
dimensions, Can they be re-designed using
parameterization principle ?";

i;
rule standard_dimension
I if !=($l:dimensions) and similar(x = $1, y = $2)

then
$list

Can these geometric features using common dimensions?";
}?
rule fastener_less
I if assembly(x = $1 :function:verb) and

fastener(x = $l:function:pobjl)
then

"— Can $l:function:pobjl be eliminated and
$1 and $function:obj be assembled directly ?";

];
rule less_machining
[if ==($l:manufacture:geometry) and

i = ($l manufacture :process)
then

"— $list are similar features,
can they be machined by the same manufacturing process?";

];
rule direct_chain
? if function(sub= $1) and function:prepl 1= _ then
"— Can $1 be eliminated and
— Can $function:obj $function:verb $function:pobjl

directly ?

www.manaraa.com

82
— Can $1 be combined with $function:obj or

$function:pobjl ?";
3?
rule direct_assembly
[if assembly(x = $l:function:verb) and

$1 :efunction:prepl I- _
then

"— Can $1 be eliminated and
$1:function:obj $1:function:verb $1:function:pobjl
directly ?";

I 7

rule direct_restrict
[if restrict(x = $1:function:verb) and

(functionrprepl == by or
functioniprepl == through)

then
"— Can $1:function:pobjl be eliminated and

$1 $function:verb $function:obj directly ?";37
rule implied chain
J chain(x, vT, y, v2, z):-

function(sub=x, verb=vl, obj=y),
function?sub=y, verb=v2, obj=z)

where
chain:vl =« chain:v2;

if chain(x=$l) and Jtransfer(x = chainsvl) then
"— There is a chaining between $1 $chain:vl $chain:y and

then $chain:zf Improvement can be made:
1. combining all three together
2. combining two of three, elimenating the third”;

3;
rule material_cost
[if expensive(x = $l:material)

then
" — Can $1 be made by cheaper material than $1 material ?";
3?
rule elimination
[if function? sub » $1)

then
"— Can $1 be eliminated, if so, how can function

$1:function:verb on $l:function:obj be preserved ?";
3 ;

www.manaraa.com

83
rule permanent__assembly

[if assembly^ x = $l:function:verb) and
$l:efunction:prepl 1= __

then
"— Can $1 be eliminated and $1:function:obj and

$1sfunction:pobjl be assembled replace by some other
permanent connection such as adhesive ?

I?
rule force_chain
I trans_chain(x, vl, y, v2, z):-

function(sub=x, verb=vl, obj=y),
function(sub=y, verb=v2, obj=z>;

if trans_chain(y = $1) and
!transfer(x = trans_chain:v2) and
transfer(x = trans_chain:vl)

then
"— To which part $1 transfer force ?

How the force transered by $trans_chain:x on it can be
balanced ?";

];
rule direct_restrict
I if restrictfx = ?1jfunction:verb) and

(function:prepl *= by or
function:prepl == through)

then
"— Can $l:function:pobjl be eliminated and

$1 $function:verb $function:obj directly
I ;

www.manaraa.com

APPENDIX C OUTPUT MESSAGES OF FRS ON THE INITIAL
DESIGN OF COMPASS

COMMAND:
analyze

compensator:element,
case:element,
dial_capsule:element

using
modularization;

OUTPUT:
Analyze objects ...
(1) compensator :element
Using rules
(1) modularization
Analyze objects ...
(2) case relement
Using rules
(1) modularization
— bottom hold cup from another module compensator,

can it be modified by modularization principle ?
— bottom hold gear3 from another module compensator,

can it be modified by modularization principle ?
— bottom hold gear4 from another module compensator,

can it be modified by modularization principle ?
— bottom hold spring_washer3 from another module

compensator,
can it be modified by modularization principle ?

— bottom hold spring_washer4 from another module
compensator,
can it be modified by modularization principle ?

— bottom support cover from another module compensator,
can it be modified by modularization principle ?

— bracket connect cover from another module compensator,
can it be modified by modularization principle ?

— top hold dial_capsule from another module compass,
can it be modified by modularization principle ?

84

www.manaraa.com

85
COMMAND:

analyze
compensator:element,
case:element,
dial_capsule:element

using
parametric_design;

OUTPUT:
Analyze objects ...
(1) compensator :element
Using rules
(1) parametric_design
— compensator:gearl, compensator:gear2, they shares common

geometric feature, but different dimensions, Can they be
re-designed using parametric design principle ?

— compensator:gearl, compensator:gear3, they shares common
geometric feature, but different‘dimensions, Can they be
re-designed using parametric design principle ?

— compensator:gearl, compensator:gear4, they shares common
geometric feature, but different dimensions, Can they be
re-designed using parametric design principle ?

— compensator:gear2, compensator:gear3, they shares common
geometric feature, but different dimensions, Can they be
re-designed using parametric design principle ?

— compensator:gear3, compensator:gear4, they shares common
geometric feature, but different dimensions, Can they be
re-designed using parametric design principle ?

COMMAND:
analyze

compensator:element,
case:element,
dial_capsule:element

using
direction chain;

www.manaraa.com

86
OUTPUT:
Analyze objects ...
(1) case :element
Using rules
(1) direct_chain
— Can bracket be eliminated ?

Can compass adjust
cover directly ?

Can bracket be combined with compass or
cover ? 01

— Can bracket be eliminated ?
Can cover connect

screw directly ?
Can bracket be combined with cover or

screw ?

Analyze objects ...
(1) dial capsule :element
Using r u X e s
(1) direct_chain
— Can bearing be eliminated ?

Can dial_shell connect
magnet_bar directly ?

Can bearing be combined with dial_shell or
magnet_bar ?

COMMAND:
analyze

compensator:element,
case:element,
dial_capsule:element

using
implied_chain?

OUTPUT:
Analyze objects ...
(1) case :element
Using rules
(1) implied_chain

www.manaraa.com

— There is a chaining between bottom hold cup and then
springjwahserl, improvement can be made:
1. combiningg all three together
2. combiningg two of three, elimenating the third

— There is a chaining between bottom hold cup and then
spring__wahser2, improvement can be made:
1. combining all three together
2, combining two of three, elimenating the third

COMMAND:
analyze

compensator:element,
case:element,
dial_capsule:element

using
direct_assembly;

OUTPUT:
Analyze objects ...
(1) compensator:element
Using rules
(1) direct_assembly
— can top connect bracket directly ?
— can top and bracket be combined ?
— can top hold bottom directly ?
— can top and bottom be combined ?

Analyze objects ...
(3) dial_capsule :element
Using rules
(1) direct_assembly
— Can bearing be eliminated and

Can dial_shell connect magnet_bar directly ?
Can bearing be combined with dial^shell or magnet_bar

www.manaraa.com

COMMAND:
analyze

compensator:element
using

direct_restrict;
OUTPUT:
Analyze objects ...
(1) compensator:element
Using rules
(1) direct_restrict
— Can spring_washes be eliminated and cover restrict

gl directly ?
— Can spring_washes be eliminated and cover restrict

g3 directly ?
— Can spring_washes be eliminated and cup restrict g2

directly ?
— Can spring_washes be eliminated and cup restrict g4

directly ?

COMMAND:
analyze

case:element
using

fastener__less
OUTPUT:
Analyze objects ...
(1) case :element
Using rules
(1) fastener less
— Can screw be eliminated and

bracket and cover be assembled directly ?

www.manaraa.com

COMMAND:
analyze

compensator:element,
caseselement,
dial_capsule:element

using
elimination;

OUTPUT:
Analyze objects ...
(1) compensator :element
Using rules
(1) elimination
Can cover be eliminated, if so,

how can function constrain on gearl be preserved ?
Can cover be eliminated, if so,

how can function constrain on gear2 be preserved ?
Can cup be eliminated, if so,

how can function constrain on gear3 be preserved ?
Can cup be eliminated, if so,

how can function constrain on gear4 be preserved ?
Can cup be eliminated, if so,

how can function hold on spring_wahserl be preserved
Can cup be eliminated, if so,

how can function hold on spring_wahser2 be preserved
Can spring washerl be eliminated, if so,h o w c a n F u n c t i o n d a m p o n g e a r l b e p r e s e r v e d ?
Can spring_washerl be eliminated, if so,

how can function restrict on gearl be preserved ?
Can spring washer2 be eliminated, if so,h o w c a n F u n c t i o n d a m p o n g e a r 2 b e p r e s e r v e d ?
Can spring_washer2 be eliminated, if so,h o w c a n f u n c t i o n r e s t r i c t o n g e a r 2 b e p r e s e r v e d ?
Can spring_washer3 be eliminated, if so,

how can function damp on gear3 be preserved ?

www.manaraa.com

Can spring_washer3 be eliminated, if so,
how can function restrict on gear3 be preserved ?

Can spring washer4 be eliminated, if so,h o w c a n F u n c t i o n damp o n gear4 be preserved ?
Can spring_washer4 be eliminated, if so,

how can function restrict on gear4 be preserved ?

Analyze objects ...
(2) case :element
Using rules
(1) elimination
Can bottom be eliminated, if so,

how can function hold on cup be preserved ?
Can bottom be eliminated, if so,

how can function hold on gear3 be preserved ?
Can bottom be eliminated, if so,

how can function hold on gear4 be .preserved ?
Can bottom be eliminated, if so,

how can function hold on spring_washer3 be preserved
Can bottom be eliminated, if so,

how can function hold on spring_washer4 be preserved
Can bottom be eliminated, if so,

how can function support on cover be preserved ?
Can bracket be eliminated, if so,

how can function adjust on compass be preserved ?
Can bracket be eliminated, if so,

how can function connect on cover be preserved ?
Can top be eliminated, if so,

how can function hold on dial capsule be preserved ?

Analyze objects ...
(3) dial_capsule relement
Using rules
(1) elimination

www.manaraa.com

Can bearing be eliminated, if so,
how can function connect on dial_shell be preserved

Can needle be eliminated, if so,
how can function pivot on bearing be preserved ?

Can needle_base be eliminated, if so,
how can function hold on needle be preserved ?

Can plate be eliminated, if so,
how can function fix on needle_base be preserved ?

www.manaraa.com

APPENDIX D USER'S GUIDE TO FRS

Following is a hand out used in the "Computer
Integrated Manufacturing" class for lab work.

USER'S GUIDE FOR FUNCTION RATIONALIZATION SYSTEM(FRS)
FRS is a program that allows a designer to review the

layout of a design. You are required to first create a
data file that contains a description of the individual
parts in the assembly as well as the function of each
component in relation to others. When FDL is invoked using
this data file, it gives you an output that confirms these
descriptions. The second part, FDL2, will use another data
file that contains the commands to analyse the design. The
output of this part is in form of suggestions to improve
the design.

The second part of the assignment is to implement some
of the suggestions made by FDL2 and redesign the assembly.
The objective of the redesign process is to reduce the
number of parts and/or reduce the cost and/or simplify
processing depending on the set of rules you use in your
input file. You should run FDL and FDL2 on your new design
also.

The input to FRS is supplied in three parts: Design
Entity Description, Analysis Statement, and Analysis Rule.

1. HOW TO WRITE DESIGN ENTITY DESCRIPTIONS
Since most objects in mechanical design are

hierarchically structured, two pre-defined hierarchical
data structures are provided by FDL for describing design
entities,viz; Component and Module.

A component is a single machine element. It can be
defined using the format,
component name(parameters)

{ geometry
surface_name

(dimension = value, ...);
material

material name;

92

www.manaraa.com

93
manufacture

process name surface name;

Any of these items can be optional, depending the
purpose of your use.
Example:
gear ()

[geometry
gear_head(d = 0.875, h=0.125);
shaft(d = 0.0625, length = 0.5);

material
plastic;

manufacture
inject_mold gear;

I;

Module is a higher-level structure consisting of a
group of components or modules. Its description includes a
list of elements and function specification.
The list of elements . may consist of components or

modules. The function specification may provide a
behavioral abstraction of the structural relationship, or,
an assembly relationship between the elements of the module
or between elements in other modules. The format for a
module is,
module name

I element
name type quantity;

function
function_decription_sentence;
• * •

J;
Here is an example,

module case
[element

top component;
bottom component;
bracket component;
bolt * 3;

www.manaraa.com

94
function

top hold dial;
bracket support compass to adjust compass position
bracket support compass by cover;
bracket connect top
bottom hold cup;
bottom hold gear3;
bottom hold gear4;

];
2. HOW TO WRITE FUNCTION DESCRIPTION SENTENCE

As it was shown in the example, the structure of
function description sentences can be very flexible. The
sample sentences are given in the examples given above.
Notice that there are no inflection rules on tenses of
verbs and on the number of nouns.

3. HOW TO WRITE ANALYSIS STATEMENT
The Analysis statement specifies the design entities

to be investigated and the rules involved. Its format is,
analyze

entity-1,
• • •
entity-k using
rule-1,
• • •
rule-m;

An analysis rule may be applied to a particular design
entity, such as,
analyze

bottom using
material_cost;

A rule can also applied to a class of design entities,
such as,
analyze

compensatorscomponent using
parameteric;

Where 'compensatorscomponent' is called 'generic
attribute'. It stands for all the components in the module
'componsator'. The system will search for all components
and apply the rule to to each one of them.

www.manaraa.com

95
When writing analysis commands, the entity must be

uniquely specified. For example,
analyze

cylinder using
rulel;

1

is incorrect, because cylinder is an element and its
ancestor's name (’module1) should also be included in the
name.

4. ANALYSIS RULE
For current lab assignment, the following rules are

available in the FRS design library.
(1) MODULARIZATION

Each Functional Module should be assigned distinct
tasks. Using several parts from different modules to
perform a common function will result in additional
complexity in manufacture. This .rule will check cross-
module assembly relations.
(2) SIMILARITY

If several components perform identical functions on
same components, some of them may be combined and some of
them may be elimimated and its function can be ditributed
to others. This rules performs this check.
(3) DIRECT_CHAIN

It identifies a relation of pattern ’x verb y to z ' and
suggests appropriate improvements.
(4) IMPLIED_CHAIN

It identifies indirect chaining relation between
several components, such as 'x verb y' and 'y verb z'.
Improvement may be made to eliminate one of them.
(5) PARAMETRIC

If there are several parts in a product which are
similar in geometry, a generic part can be designed with
common geometric features. By varying certain dimensions,
a family of parts can be derived from that generic part.
This rule will identify these components.

www.manaraa.com

96
(6) STANDARD DIMENSION

If several similar machined features, e.g. holes, are
present in a part, they should be the same size if
possible. The advantage of doing so is obvious. To use
this rule, the user must create a data table

x
holel
holel
hole2
slotl
s 1 o 11
slot2

yhole2
hole2
hole3
slot 2
s lot 3
slot3

x y
holel hole2
holel hole3
hole2 hole3

where holel, hole2 and hole3 are considered to be similar
and the three slots are also considered to be similar.
When rule 'similar' is used, it must be written as,
analyze

hydraulic:cylinder:geometry using
standard_dim;

where the feature to be analyzed is 'geometry' of an
element, hydraulic:cylinder in this case.
(7) FASTENER_LESS

A large amount of time in assembly is devoted to
handling fasteners, such as bolts, nuts, cap screws, spring
retainers, locking devices, and keys. Whenever possible,
replace these removable connections with permanent
connections such as adhesives. This rule will identify the
components which are considered as fasteners. In the FDL
libarary this is a data table
(8) LESS_PROCESS

If a component has several similar geometric features,
such as holes machined by different processes, it is
suggested that you use the least number of processes to
achieve the same results. This rule allows you to identify
these features and processes.

www.manaraa.com

97
(9) MATERIAL_COST

To use this rule, the user needs to set up a table
'expensive', which stores all the materials which he
thinks are expensive. Then the system will check all
the materials against the table.
5. HOW TO RUN THE FRS SYSTEM

The FRS is divided into two parts, the first part
takes the design entity description and stores it into the
database, then the second part will be invoked to do the
analysis. The step by step instructions are given below:
(1) Edit two files, one is for design entity description
only, say 'ABC.DATA', and another is for analysis commands
only, say 'ABC.RULE’. It is suggested that only lowercase
letters be used, because the capital letter is recognized
as an independent character.
(2) Type in command 'assign ABC.DAT sys$input’
(3) Type in command 'FDL', it genera'tes a series of data
tables.
(5) Type in command 'assign ABC.RULE sys$input'
(6) Type in command 'FDL2*, it displays analysis messages
on the function descriptions.

In FDL the following tables are referred to,
restrict(x)
fasten(x)
expensive(x)
similar(x)
Where tables 'restrict' and 'fasten' are defined in the

system library. Before running FDL2, copy these two files
into your directory. Tables "expensive" and "similar" can
be created by the user as described in earlier sections.
In addition, you should add these commands in your Design
Entity Description file, if the corresponding rules are to
be applied:

defrel fasten(x);
defrel restrict(x);
defrel similar(x);
defrel expensive!!x);

www.manaraa.com

98
so the table names can be stored into the system directory.

6. VERBS, PREPOSITIONS, AND PROCESSES IN FRS
The following are system defined vocabulary and cannot

be changed by the user:
VERBS DRIVE

FIX
GUIDE
KEEP
PUSH
ADJUST
CAST
MOVE
COMPENSATE
SEAL
SUPPORT
HOLD
CONNECT
LINK
PIVOT
SENSE
ROTATE
RESTRICT

PREPOSITIONS FROM
AT
BY
IN
ON
OFF
ONTO
TO
THROUGH

PROCESS CAST
PRESS
INJECT_MOLD
GRIND
DRILL
TURN
FINISH_TURN
BORE
REAM
FORGE
MILL

www.manaraa.com

99
The following files have been created for use but

be modified by the user if required.
file name RESTRICT.

keep
fix
connect
restrict
constrain

file name FASTEN.

can

fix
screw
clamp

www.manaraa.com

VITA

NAME : KEWEI LAI
BIRTH : March 15, 1946. Shanghai, China
EDUCATION:

Ph.D. in Mechanical Engineering, June 1988
Northwestern University, Evanston, Illinois, U.S.A

M.S. in Mechanical Engineering, June 1984
Northwestern University, Evanston, Illinois, U.S.A

B.S. in Automotive Engineering, December, 1968
Tsinghua University, Peking, China

WORK EXPERIENCE:
SENIOR LECTURER, 1973-1982

Mechanical Engineering Department,
Qinghai Engineering and Agricultural Institute
Xining, China,

ENGINEER, 1968-1973
Qinghai Auto Parts Manufacture Inc.
Xining, China

PUBLICATIONS
1. Kewei Lai and Jyhwen Wang, "A Computational Geometry

Approach To Geometric Tolerancing", To appear at
16th North American Manufacturing Research
Conference (NAMRC), May 1988.

2. Kewei Lai, "An Extended Relational Database For
Conceptual Analysis of Mechanical Design", Proc.
1987 ASME Design Automation Conference, Boston,
MA, Sep. 1987

3. Kewei Lai and W.R.D. Wilson, "FDL - A Language for
Function Analysis and Rationalization in Mechanical
Design", Proc. 1987 ASME Intl. Conf. Computers
in Engineering, New York, Aug. 1987, 87-94.

4. Kewei Lai, "Mechanical Design Simplification Using
Function Description Language", Proc. 15th North
American Manufacturing Research Conference(NAMRC),
May 1987, pp. 615-620

5. Kewei Lai and W.R.D. Wilson, "Computer Aided Material
Selection and Process Planning", Proc. 13th North
American Manufacturing Research Conference(NAMRC),
May 1985, pp. 505-508.

100

3 5556 019 137 686
35556019137686

